Solutions Architect

Computomic
Sheffield
1 year ago
Applications closed

Related Jobs

View all jobs

GCP Data Architect

GCP Data Architect

Data Architect

Data Architect

Data Architect

Data Architect - SC Cleared

Computomic was founded in 2019 with a vision to design and deploy mission critical and highly differentiated Data & AI solutions for companies looking to migrate their data stack from legacy data platforms such as Teradata, Cloudera, Datastage and Informatica to modern data platforms like Databricks. Over the last few years, we have become a leading Databricks partner, building a strong and mature Databricks practice and delivering Databricks migration projects for some of the world’s leading companies.


Our consulting services and tooling help companies realize value from their data by modernizing their data stack to the latest data platform technologies like Databricks. We use accelerators that save companies up to 80% of time and money moving data from legacy platforms to Databricks. We help customers find margins of improvement in everything they do, which when aggregated creates a transformative effect on their business.


We are a nimble and rapidly growing company with a global footprint, and a focus on Data & AI, and Financial Crime Prevention solutions. We have built an impressive depth of Data & AI experts with over 40 trained and certified Databricks professionals; experts in BI/ Dashboarding tools such as PowerBI and Tableau; and experts in financial crime and fraud prevention.


Our name Computomic is derived from two words: Computers and Atomic. We believe in making one small change (Atomic) at a time, so that the cumulative effect of all the changes delivers a massive impact.


The Role

We are one of the fastest growing partners for Databricks and are looking for aPrincipal Engineer/Architectto help us build one of the most impactful Data & AI practices in the industry!

You will have the opportunity to shape the future of the Data & AI landscape at leading Fortune 500 companies and cutting-edge startups. You will work on the industry’s most challenging customer engagements to solve Data & AI problems using leading cloud platforms such as AWS/Azure/GCP and Databricks.


You will have the opportunity to work with some of the leading experts in the data and AI industry and develop a deep understanding of Databricks and adjacent technologies. You will be empowered to scope, negotiate and lead complex data migration projects, develop data and AI best practices and thought leadership, and represent both Computomic and Databricks at Industry forums and events.


You will join a team of experts with the autonomy and flexibility to make quick decisions, forge your own paths and adapt to the changing market and customers’ needs.


What you will be doing:

  1. Lead our rapidly growing Data & AI practice
  2. Hire, train and develop highly differentiated and diverse team of Data & AI experts
  3. Work directly with end customers and lead enterprise scale Data & AI projects
  4. Be the trusted behind-the-scenes SME who works to ensure success and delivery excellence across many engagements
  5. Function as a force multiplier by enabling our customers with reusable tools and packaged solutions
  6. Provide thought leadership in the areas of data engineering, data governance, data transformations, curation and data integration
  7. Develop data architecture blueprints, patterns and frameworks that will enable reuse and standardization
  8. Grow your practice by influencing sales deals and assist with scoping, solutioning and estimating effort
  9. Lead efforts to develop reusable frameworks, accelerators and internal product development


The skills you will bring:

  1. Working knowledge of three common cloud ecosystems (AWS, Azure, GCP) with expertise in at least one. With Strong abilities to provide a firm point of view on core cloud platform capabilities, security, and best practices
  2. Capable of designing and deploying highly performant end-to-end data architectures
  3. Strong integration & automation implementation skills
  4. Proven experience building reusable frameworks and packaged solutions for horizontal solutions (e.g. migrations, MLOps, observability)
  5. Ability to identify, debug bottlenecks and significantly optimize slow running data pipelines
  6. Experience migrating applications from legacy Hadoop or Data Warehouses to the cloud


Other nice to have skills:

  1. You bring an uncompromising Growth mindset
  2. Demonstrating prior Big 4 or proven consulting experience in strategy through execution projects is a plus
  3. Experience leading and working with large Cloud Data Platforms, Cloud Data migration or Enterprise Information Management programs
  4. You are highly motivated, creative in your approach to technical problems and know how to leverage both internal and external networks
  5. You invest in keeping technical skills updated and are constantly looking for the next big challenge
  6. You will bring both broad and deep knowledge in Data Engineering and can architect a solution by mapping a customer business problem to an end-to-end solution.
  7. You are resourceful, confident and composed under pressure


What we offer:

  1. Excellent Compensation, including bonuses
  2. 401k Plan
  3. Robust Health and Wellness Benefits
  4. Referral Program
  5. Paid Time Off and Sick Leave
  6. Professional Development Assistance
  7. Excellent work culture
  8. Remote/Hybrid working option
  9. Training & Certification on Databricks + adjacent technologies
  10. Career Development Plan including management/ leadership training


What else we offer:

  1. Work with cutting edge technologies
  2. Work with world class team members
  3. Work on the most interesting/ exciting/ varied projects - e.g. end-end/ complex migrations; FastStart/ Best Practices; F500/ SME companies
  4. Project responsibility/ independence - pre-sales (scope/ negotiate), delivery (execution/ impact), expansion (sales)
  5. Tech Support/ Troubleshooting - problem solve on BIG issues
  6. IP Creation - working with Computomic’s product dev team
  7. Thought Leadership - author Blogs, White Papers
  8. Marketing - attend industry forum & events


Are you passionate about this opportunity, but speculating that you don’t meet 100% of the experience we’re looking for? We still want to hear from you!


Apply online and let us know why you would make a great addition to the Computomic team.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.