Product Manager – Digitalization

Oxford
2 weeks ago
Create job alert

Product Manager – Smart Diagnostics & Digitalization

Location: Remote
Industry: Feed & Biofuel / Renewable Energy / Industrial Automation
Type: Full-Time | Permanent

About Us

We are working with a global leader in the design and construction of advanced feed and biomass production plants. Their mission is to deliver high-performance industrial solutions that maximize sustainability, efficiency, and uptime. As they expand their digital capabilities, we are looking for a Product Manager with a strong mechanical background and expertise in smart diagnostics and digital product development.

Role Overview

As Product Manager for Smart Diagnostics, you will lead the development of innovative digital tools to monitor and diagnose mechanical assets across a global customer base. This includes leveraging machine learning, sensor data, and domain expertise to reduce downtime and improve operational efficiency.

You’ll play a key role in conceptualizing, designing, and delivering digital products from scratch, bridging the gap between mechanical engineering and next-gen digital solutions.

Key Responsibilities

  • Design and develop digital diagnostic products for mechanical assets (e.g., pellet mills, conveyors, grinders).

  • Define and own the product roadmap for smart maintenance and condition monitoring solutions.

  • Utilize machine data, vibration analysis, and performance metrics to predict failure modes and optimize service schedules.

  • Apply machine learning models to real-world machine behavior in feed and biomass plants.

  • Collaborate with software engineers, data scientists, service engineers, and plant designers.

  • Engage with customers and stakeholders to understand their pain points and tailor solutions.

  • Lead end-to-end product lifecycle from idea to commercial launch.

  • Ensure full alignment with engineering, digital development, and commercial teams.

  • Contribute to building an intelligent service platform for the industry of tomorrow.

    What We’re Looking For

  • Mechanical Engineering degree or similar technical background.

  • Proven experience in diagnostic systems, predictive maintenance, or condition monitoring.

  • Strong understanding of mechanical asset behavior in industrial environments.

  • Experience applying machine learning models or working alongside data science teams.

  • Ability to create digital products from the ground up in a structured and user-centric way.

  • Excellent communication and cross-functional collaboration skills.

  • Experience in the Feed & Biofuel or biomass processing industry is highly desirable.

  • Fluent in English; additional languages are a plus.

    What We Offer

  • A key role in shaping the future of digital maintenance in renewable industries.

  • Opportunity to work with cutting-edge technologies and meaningful industrial applications.

  • A collaborative, international environment with significant autonomy.

  • Competitive salary and benefits package.

  • Travel opportunities and career progression within a global leader

Related Jobs

View all jobs

Product Manager – Digitalization

Product Manager – Smart Diagnostics & Digitalization

Data Engineering Manager

Product Manager

Product Manager - Claims Predictive Analytics

Senior Product Manager - AI, ML & Data Science

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.