Lead Machine Learning Engineer

NLP PEOPLE
London
4 days ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer

ML (Machine Learning) Engineer

Principal Data Scientist - NLP

Lead Data Engineer

Lead Back-end Engineer

Lead Electronics Engineer

About The Role

At National Grid, we keep people connected and society moving. But it’s so much more than that. National Grid supplies us with the environment to make it happen. As we generate momentum in the energy transition for all, we don’t plan on leaving any of our customers in the dark. So, join us as a Lead Machine Learning Engineer, and find your superpower.

National Grid is hiring a Lead Machine Learning Engineer for our IT & Digital department. This is a hybrid role based in London.

As a Lead Machine Learning Engineer on the National Grid Data Science team, you will develop data pipelines, take data science prototype models to production, fix production bugs, monitor operations, and provision the necessary infrastructure in Azure.

Key Accountabilities:

  1. Lead Machine Learning projects end-to-end.
  2. Develop platform tooling (e.g., internal conda library, CLI tool for project setup, and provisioning infrastructure) for the Data Science team.
  3. Work with data scientists to understand their data needs and put together data pipelines to ingest data.
  4. Work with data scientists to take data science model prototypes to production.
  5. Mentor and train junior team members.
  6. Work with internal IT teams (security, Cloud, Global Active Directory, Architecture, Networking, etc.) to advance the team’s projects.
  7. Enhance code deployment lifecycle.
  8. Improve model monitoring frameworks.
  9. Refine project operations documentation.
  10. Design, provision, and maintain the cloud infrastructure needed to support Data Engineering, Data Science, Machine Learning Engineers, and Machine Learning Operations.
  11. Write high-quality code that has high test coverage.
  12. Participate in code reviews to help improve code quality.

Technologies/Tools we use:Python, Azure (Virtual Machines, Azure Web Apps, Cloud Storage, Azure ML), Anaconda packages, Git, GitHub, GitHub Actions, Terraform, SQL, Artifactory, Airflow, Docker, Kubernetes, Linux/Windows VMs.

About You:

  1. Hands-on industry experience in some combination of Software Engineering, ML Engineering, Data Science, DevOps, and Cloud Infrastructure work.
  2. Expertise in Python which includes experience in libraries such as Pandas, scikit-learn. High proficiency in SQL.
  3. Knowledge of best practices in software engineering is necessary.
  4. Hands-on industry experience in some combination of the following technologies: Python ecosystem, Azure (VMs, Web Apps, Managed Databases), GitHub Actions, Terraform, Packer, Airflow, Docker, Kubernetes, Linux/Windows VM administration, Shell scripting (primary Bash but PowerShell as well).
  5. A solid understanding of modern security and networking principles and standards.
  6. A foundational knowledge of Data Science is strongly preferred.
  7. Bachelor’s or higher degree in Computer Science, Data Science, and/or related quantitative degree is preferred from an accredited institution.

More Information:

A salary between £80,000 – £95,000 – dependent on capability.

As well as your base salary, you will receive a bonus of up to 15% of your salary for stretch performance and a competitive contributory pension scheme where we will double match your contribution to a maximum company contribution of 12%. You will also have access to a number of flexible benefits such as a share incentive plan, salary sacrifice car and technology schemes, support via employee assistance lines and matched charity giving to name a few.

#LI-RL1

#LI-HYBRID

At National Grid, we work towards the highest standards in everything we do, including how we support, value and develop our people. Our aim is to encourage and support employees to thrive and be the best they can be. We celebrate the difference people can bring into our organisation, and welcome and encourage applicants with diverse experiences and backgrounds, and offer flexible and tailored support, at home and in the office.

Our goal is to drive, develop and operate our business in a way that results in a more inclusive culture. All employment is decided on the basis of qualifications, the innovation from diverse teams & perspectives and business need. We are committed to building a workforce so we can represent the communities we serve and have a working environment in which each individual feels valued, respected, fairly treated, and able to reach their full potential.

Company:

National Grid

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.

Data Science vs. Data Mining vs. Business Intelligence Jobs: Which Path Should You Choose?

Data Science has evolved into one of the most popular and transformative professions of the 21st century. Yet as the demand for data-related roles expands, other fields—such as Data Mining and Business Intelligence (BI)—are also thriving. With so many data-centric career options available, it can be challenging to determine where your skills and interests best align. If you’re browsing Data Science jobs on www.datascience-jobs.co.uk, you’ve no doubt seen numerous listings that mention machine learning, analytics, or business intelligence. But how does Data Science really differ from Data Mining or Business Intelligence? And which path should you follow? This article demystifies these three interrelated yet distinct fields. We’ll define the core aims of Data Science, Data Mining, and Business Intelligence, highlight where their responsibilities overlap, explore salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer sense of which profession could be your ideal fit—and how to position yourself for success in this ever-evolving data landscape.

UK Visa & Work Permits Explained: Your Essential Guide for International Data Science Talent

Data science has rapidly evolved into a driving force for businesses and organisations worldwide. In the United Kingdom, companies across sectors—including finance, retail, healthcare, tech start-ups, and government agencies—are turning to data-driven insights to boost competitiveness and innovation. Whether you specialise in statistical modelling, machine learning, or advanced analytics, data scientists are in high demand throughout the UK’s vibrant tech ecosystem. If you’re an international data scientist aiming to launch or grow your career in the UK, one essential part of the journey is navigating the country’s visa and work permit system. From understanding how to secure sponsorship as a Skilled Worker to exploring the Global Talent Visa for leading experts, this article will help you understand the most relevant routes, criteria, and practical steps for your move. Let’s delve into everything you need to know about working in data science in the UK as an international professional.