Lead Back-end Engineer

London
10 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist — Scale Personalisation & Ads (Hybrid)

Lead Data Engineer

Lead Data Engineer — Cloud Data Pipelines

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer: Build Scalable Data Pipelines

Lead Software Engineer
London (3 days remote)
Are you an experienced back-end Node.js Developer?
Are you looking for a career which will give you autonomy along with the tools to succeed?
Come and join this booming start-up as they expand and continue to take a multi-billion pound industry by storm with their one of a kind, cutting-edge product.
Not only will you get autonomy and play a pivotal role in their success, but you will also benefit from:

  • Flexible work schedule & hybrid 1-2 days a week in the office
  • Fast decision-making processes
  • Supportive team culture with strong mentorship.
  • Flat organizational structure.
  • Opportunities for professional and career growth.
  • Performance bonus
  • Access to professional seminars and training of your choice.
    What will you do?
  • Develop and integrate new applications and features.
  • Enhance the stability and performance of existing software.
  • Collaborate with fellow engineers to research and implement new technologies and design patterns.
  • Ensure the best possible experience for users.
  • Mentor 2 developers and grow your own team
    Who will you be?
    Ideally you'll have at least 5+ years of recent experience as a back-end developer working with Node.js. You will also have solid experience using PostgreSQL as the main data source. You will laso have some background in managing/ leading small teams.
    Bonus points:
  • Experience with TypeScript.
  • Knowledge of big data and/or machine learning pipelines.
  • Experience with cloud hosting services such as AWS or Google Cloud.
  • Familiarity with Kubernetes and Kafka.
    If you would like to hear more, please hit APPLY NOW and I'll be in touch for a confidential conversation

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.