Growth Data Scientist/Analyst (copy)

Crypto.com
London
6 days ago
Create job alert

We are seeking a dynamic Growth Data Scientist/Analyst to join our Growth team. The successful candidate will be instrumental in leveraging data to drive strategic decisions, optimize growth initiatives, and enhance user acquisition strategies.

Responsibilities
  • Data Analysis and Visualization
  • Design, develop, and maintain interactive dashboards in Tableau to support both recurring and ad-hoc reporting needs across various growth functions and leadership teams, enabling real-time performance tracking and insights
  • Write and optimize SQL queries to analyze large-scale datasets, supporting initiatives like user acquisition optimization, campaign performance evaluation, and customer lifecycle management to drive business growth
  • Partner with cross-functional teams—including growth, product, data engineering, and external vendors—to improve data infrastructure, ensuring accurate, scalable, and efficient data pipelines that support business goals
  • Streamline and automate recurring data workflows and processes, manage SQL automation and job scheduling, and maintain thorough documentation to enhance team productivity and data reliability
  • Develop advanced analytical models to inform marketing strategies, including predictive analytics and marketing mix modeling, providing actionable insights for campaign planning and optimization
  • Leverage statistical techniques and business intelligence tools to uncover trends, patterns, and opportunities that inform strategic growth decisions
  • Collaborate closely with cross-functional stakeholders to implement data-driven solutions and support end-to-end project delivery, ensuring alignment with business objectives and timelines
  • Stay proactive in professional development by exploring emerging tools and methodologies in data science and analytics, continuously enhancing analytical capabilities and industry knowledge
Requirements
  • Bachelor’s degree in a quantitative field such as Computer Science, Statistics, Engineering, Information Systems, or related fields
  • 2+ years of experience in data analysis or a related field. Experience in the Crypto and Technology industry is a plus
  • Proficiency in SQL, Databricks, and Tableau for processing, analyzing, and visualizing large datasets
  • Experience with statistical software (e.g., R, Python) and libraries for managing, manipulating, and analyzing data
  • Strong analytical skills with the ability to collect, organize, analyze, and disseminate significant amounts of information with attention to detail and accuracy
  • Adept at querying, report writing, and presenting findings
  • Understanding of digital marketing concepts, such as user acquisition (organic, non-organic, partnerships, etc.), campaign management, and customer lifecycle management
  • Familiarity with tools like AppsFlyer, Google Tag Manager, Google Analytics, and SensorTower
  • Strong communication skills to effectively convey complex data insights to non-technical stakeholders and to translate business needs into technical and data requirements
  • Ability to thrive in a fast-paced environment, manage multiple projects, and adapt to shifting priorities

London, England, United Kingdom


#J-18808-Ljbffr

Related Jobs

View all jobs

Growth Data Scientist/Analyst (copy)

Data Scientist

Staff Data Scientist (Paid Marketing)

Baseball Analyst / Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.