Debt Data Analyst - FTC

SmartestEnergy Business Limited
Worthing
6 days ago
Create job alert

We’re seeking a proactive, technically skilled Data Analyst to join our Debt Team, playing a key role in both day-to-day operations and longer-term strategic initiatives. This position focuses on delivering high-quality regular and ad-hoc reporting, uncovering trends in debt and payment behaviour, and translating data into clear, actionable insights that drive better business decisions. Working closely with the team and stakeholders across the business, you’ll help improve performance and support our debt objectives.


The role requires strong technical capability, particularly in SQL and Power BI, to develop, maintain, and adapt complex queries, reports, and dashboards. You’ll support existing reporting solutions, respond to database or system changes, and ensure data accuracy and consistency across all platforms. In addition, you’ll contribute research and insights to reduce bad debt, meet third‑party and regulatory reporting requirements, and collaborate with stakeholders to refine processes and resolve reporting challenges.


Please note this is fixed term until September 2026


What skills/experience do I need to be successful?

  • Experience in a similar data analysis or reporting role;
  • Previous experience in energy or debt management;
  • Advanced SQL skills and deep understanding of relational database concepts including star and snowflake schemas;
  • Proficient in Power BI report and dashboard development.

What sets us apart?

  • Global Impact: With offices in the UK, US, and Australia, and plans for further expansion, you’ll be part of a dynamic, globally‑minded team, with opportunities to explore new markets and make a difference on a global scale.
  • Flexible Working: Embrace the freedom to work from anywhere in the world for up to 30 days a year. We prioritize work‑life balance, recognizing that your well‑being matters.
  • Commitment to Diversity and Inclusion: We celebrate our diverse culture and value individuals irrespective of background, disability, religion, gender identity, sexuality, or ethnicity. Join a team where diversity is not just welcomed but celebrated as a key driver of growth and innovation.

What does hybrid working mean to us?

Hybrid working typically means 2 days in the office location listed on this advert and 3 days working at home each week. Some occasional travel to our other offices may be required.


What happens next?

Once we receive your application, it will be reviewed by a human – no bots here! The average process typically takes around 2‑3 weeks, with 2 stages of video interviews using Teams. However, this can vary depending on the role. We may invite you for a face‑to‑face meeting or require only 1 video interview. If you have any questions or need support, our Recruitment Team is here to assist you.


Ready to join us on our journey to digitise, decarbonise, and localise the future of energy? Apply now.


We’re committed to making the application process easy and comfortable. Let us know how we can help you with any reasonable adjustments that can be tailored to your needs. At the bottom of each of our adverts you can find one of our recruitment teams’ contact details. Please reach out so we can discuss with you further.


#J-18808-Ljbffr

Related Jobs

View all jobs

Debt Data Analyst - FTC

Debt & Revenue Data Analyst – Hybrid, Data-Lake Focus

Portfolio Revenue & Debt Data Analyst

Data Analyst – Fintech SaaS, Drive Sales Insights & Billing

Data Analyst – Fintech SaaS | Hybrid, Onboard & Drive Growth

Data Analyst - Fintech SaaS Game Changer.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.