Data Scientist

Harnham
Preston
1 day ago
Create job alert

Data Scientist (Mid-Level)

London (Bond Street) – 4 days a week in office (Mon–Thurs)

Up to £65,000 + 10% bonus


About the Company

We’re partnering with a high-performing international investment firm that works closely with ambitious, high-growth businesses to help them scale sustainably and create long-term value. Operating across Europe, the US, and Asia, this organisation combines deep investment expertise with modern technology to make smarter, faster decisions across sourcing, diligence, and portfolio management.


Over the past several years, they’ve built an in-house Data Science and AI function that applies advanced analytics, NLP, and large language models to real-world commercial and investment problems. This is a genuinely data-driven environment where technical work directly informs senior decision-making.


The Role

They’re now hiring a Mid-Level Data Scientist to join a growing London-based Data Science team. This role sits at the intersection of research, production ML, and high-impact short-form analysis, offering exposure to multiple projects rather than a single narrow product.


You’ll work hands-on with Python and cloud-based ML systems, contributing across the full data science lifecycle — from early experimentation and proof-of-concept work through to deployment and iteration in production. There’s a strong emphasis on solid engineering fundamentals alongside classical data science skills.


This is a great opportunity for a generalist data scientist who wants ownership, variety, and exposure to LLM use cases in a commercial environment.


Key Responsibilities

  • Research and prototype new data science and LLM-driven use cases to support commercial and strategic decision-making
  • Apply NLP and language analysis techniques to large, unstructured datasets
  • Build, test, and iterate on machine learning models using strong classical data science foundations
  • Support the productionisation and deployment of models in a cloud environment
  • Contribute to short, high-impact analytical projects supporting deal sourcing and due diligence
  • Work across multiple projects and products simultaneously, balancing research and delivery
  • Collaborate closely with other data scientists, engineers, and non-technical stakeholders
  • Take ownership of components of the data science stack, from experimentation through to live usage


Requirements:

You’re a technically strong, mid-level data scientist with a solid grounding in core data science principles and a growing interest in modern NLP and LLM-based systems. You enjoy working end-to-end, writing clean, production-ready code, and taking ownership of your work.


  • Around 3 years’ experience in a hands-on data science role
  • Strong Python skills and good software engineering fundamentals
  • Solid understanding of classical data science and machine learning techniques
  • Experience delivering data science projects end-to-end, from proof of concept to production
  • Familiarity with NLP and/or large language models
  • Cloud experience (GCP preferred; AWS or Azure also acceptable)
  • Comfortable working autonomously across multiple projects
  • Strong communication skills and a collaborative mindset
  • Experience with Transformers, Hugging Face, or modern NLP tooling
  • Exposure to agentic or LLM-based frameworks
  • Experience building simple front ends or dashboards (e.g. Streamlit)
  • Background in product-led or financial services environments


Please note: This role cannot offer VISA sponsorship.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Consumer Lending Data Scientist

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Data Scientist - New

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.