Data Scientist

London
1 day ago
Create job alert

Data Scientist / Machine Learning Engineer

Join our team as a Data Scientist / Machine Learning expert in the Analytics department within the business services industry. This permanent position, based in London, offers an opportunity to apply advanced data science techniques to deliver actionable insights.

Client Details

Data Scientist / Machine Learning Engineer

Our client is a well-established organisation within the business services industry. They are a medium-sized entity with a commitment to innovation and excellence in their field, providing a supportive environment for professional growth.

Description

Data Scientist / Machine Learning Engineer

Develop and implement machine learning models to analyse complex data sets.
Collaborate with cross-functional teams to identify business challenges and provide data-driven solutions.
Optimise data pipelines and workflows for improved efficiency.
Translate analytical findings into clear insights and recommendations for stakeholders.
Stay updated on the latest advancements in data science and machine learning methodologies.
Create and maintain detailed documentation of data models and processes.
Conduct exploratory data analysis to uncover trends and patterns.
Ensure data quality and integrity throughout all analytics processes.Profile

Data Scientist / Machine Learning Engineer

A successful Data Scientist / Machine Learning expert should have:

A strong academic background in data science, computer science, mathematics, or a related field.
Hands-on experience with AWS ML stack (SageMaker, Lambda, Redshift).
Proven ability to design and implement machine learning algorithms and models.
Proficiency in Python, SQL, and ML libraries (e.g., scikit-learn, XGBoost, PyTorch, TensorFlow).
Strong data analysis, statistical modelling, and experimentation skills.
Experience with data visualisation tools and techniques.
Proficiency in programming languages such as Python, R, or similar.
Knowledge of data processing frameworks and platforms.
Attention to detail and a methodical approach to problem-solving.Job Offer

Data Scientist / Machine Learning Engineer

Competitive salary ranging from £60,000 to £69,000 per annum.
Comprehensive standard benefits package.
Opportunity to work in the thriving business services industry.
Located in the heart of London with excellent transport links.
Permanent role with opportunities for professional growth and development.If you are ready to take the next step in your career as a Data Scientist / Machine Learning specialist, we encourage you to apply now

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.