Data Scientist

TalentBurst
Richmond
3 days ago
Create job alert
Data Scientist

Location: 100% Remote role


Duration: 6+ months (possible extension)


Complete Description

  • This role will provide expertise and support to the DJJ HR team in HR data reporting, validation, and visualization through the development of an interactive dashboard using Power BI and establishing a data warehouse to collect, store and organize data.
  • VA DJJ HR has the shell of a PowerBI dashboard that may be expanded upon with improving in the build of dynamic dashboard and ensure HR data is consistent, accurate, and usable for reporting and strategic initiatives.
  • Seeking a consultant well versed in raw HR data points, current reporting techniques and strategic development of an interactive HR Dashboard utilizing PowerBI where the raw data is automatically updated frequently and permits for ad hoc reporting.
  • The HR dashboard should include key metrics to include but not limited to agency position count, agency headcount, demographics, turnover and retention trends, leave usage and absenteeism, time-to-fill, vacant positions, and more.
  • The consultant should be able to maintain confidentiality; an eye for detail in visualization development and reporting; and the ability to train. Must be able to communicate effectively with across functional areas as it relates to the HR Dashboard and data needs.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Consumer Lending Data Scientist

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Data Scientist - New

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.