DATA SCIENTIST

Reply, Inc.
London
6 days ago
Create job alert
Career Opportunities: Data Scientist (10888)

Requisition ID10888-Posted - Years of Experience (1) -Technology- Where (1) -Job


Data Reply is the Reply Group company offering a broad range of analytics and data processing services. We operate across different industries and business functions, working directly with executive level professionals, enabling them to achieve meaningful outcomes through effective use of data. We find that one of the biggest problems experienced by our clients today is being overwhelmed with the amount of data that they face and not knowing how to leverage it to their advantage. The vast landscape of available technology stacks and models means that choosing the right ones can be a daunting task. Most companies know that their data is valuable, and that they should be making the most out of it to stay competitive, but often don’t know where to begin or what to prioritise. At Data Reply, we pride ourselves on helping clients make the right decisions to build their data strategy. With our consultants’ expertise, we map the right technologies to meet our clients’ business needs. We deal in bespoke solutions, and offer in house training to ensure that our clients realise the full value of their big data solution.


Role Overview

As a Data Scientist at Data Reply, you will play a hands‑on role in designing, building, and deploying data‑driven solutions using machine learning (ML) and generative AI (GenAI) techniques on AWS. You will work alongside senior data scientists and engineers to transform business problems into scalable ML solutions and contribute to end‑to‑end project delivery in an enterprise setting.


This role is ideal for someone with 1–2 years of professional experience in data science who has worked on at least 2–3 enterprise‑level projects and is eager to deepen their expertise in modern ML frameworks, cloud technologies, and emerging AI domains such as computer vision or GenAI.


Responsibilities

  • Develop, train, and evaluate machine learning models using Python and popular frameworks (scikit‑learn, TensorFlow, PyTorch)
  • Conduct exploratory data analysis, feature engineering, model optimization, and apply statistical modeling techniques
  • Build and deploy ML models on AWS SageMaker, collaborating with MLOps engineers to integrate solutions using AWS services
  • Ensure responsible AI by implementing model explainability and bias detection techniques
  • Apply deep learning models (e.g., RNN, LSTM) on client projects and prototype new AI capabilities (multi‑modal, synthetic data, agent‑based systems)
  • Work with cross‑functional teams to deliver scalable AI solutions, and translate technical results into client recommendations
  • Document methodologies, maintain reproducibility, share knowledge internally, and stay updated on trends in data science and cloud ML

About the Candidate

  • 1–2 years of hands‑on experience in data science or applied machine learning in an enterprise setting
  • Strong understanding of AWS services, particularly SageMaker, S3, and Bedrock
  • Proficiency in Python with experience using NumPy, pandas, scikit‑learn, and one deep learning framework (PyTorch or TensorFlow)
  • Experience working with structured and unstructured data, using SQL or Pandas for data manipulation
  • Experience using Git, Jupyter Notebooks, and collaborative environments
  • Experience in computer vision, natural language processing (NLP), or generative AI applications
  • Familiarity with LangChain, Hugging Face, or OpenAI APIs for working with LLMs
  • Experience with data pipeline tools (e.g., Airflow, Step Functions) or data validation frameworks (e.g., Great Expectations)

Reply is an Equal Opportunities Employer and committed to embracing diversity in the workplace. We provide equal employment opportunities to all employees and applicants for employment and prohibit discrimination and harassment of any type regardless of age, sexual orientation, gender, identity, pregnancy, religion, nationality, ethnic origin, disability, medical history, skin colour, marital status or parental status or any other characteristic protected by the Law.


Reply is committed to making sure that our selection methods are fair to everyone. To help you during the recruitment process, please let us know of any Reasonable Adjustments you may need.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Consumer Lending Data Scientist

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Data Scientist - New

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.