Data Science Manager

Ralph Lauren Corporation
City of London
2 weeks ago
Create job alert

Ralph Lauren Corporation (NYSE:RL) is a global leader in the design, marketing and distribution of premium lifestyle products in five categories: apparel, accessories, home, fragrances, and hospitality. For more than 50 years, Ralph Lauren's reputation and distinctive image have been consistently developed across an expanding number of products, brands and international markets. The Company's brand names, which include Ralph Lauren, Ralph Lauren Collection, Ralph Lauren Purple Label, Polo Ralph Lauren, Double RL, Lauren Ralph Lauren, Polo Ralph Lauren Children, Chaps, among others, constitute one of the world's most widely recognized families of consumer brands.


Position Overview

We’re looking for a passionate and experienced Data Scientist Manager to lead personalization efforts within Ralph Lauren’s CRM ecosystem. You’ll develop predictive models and recommendation systems that enhance customer engagement across global markets.


Lead development of machine learning solutions for CRM personalization.


Build and optimize recommendation engines using neural networks and deep learning, incorporating product embeddings and other advanced features to improve relevance and performance.


Collaborate with CRM and regional marketing teams to align with campaign goals and customer segmentation strategies.


Own the full ML lifecycle—from model design to deployment and monitoring.


Partner with engineering and data teams to ensure scalable solutions.


Continuously monitor and improve model performance using data insights and feedback.


Experience, Skills & Knowledge

  • Proven experience in machine learning, particularly in recommendation systems and deep learning architectures.
  • Strong understanding of two-tower neural networks, embedding techniques, and ranking models.
  • Proficiency in Python with familiarity to ML libraries e.g. pandas, numpy, scipy, scikit-learn, tensorflow, pytorch.
  • Familiarity with cloud platforms (GCP, AWS, Azure) and tools like Dataiku.
  • Experience with ML Ops, including model deployment, monitoring, and retraining pipelines.
  • Ability to work cross-functionally with marketing, CRM, and engineering teams.
  • Excellent communication and stakeholder management skills.
  • Experience in a global or multi-regional context is a plus.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.