Data Science Manager

iO Associates - UK/EU
Sheffield
6 days ago
Applications closed

Related Jobs

View all jobs

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Science Manager London, UK • Data & Analytics • Data Science +1 more London, UK Data & Ana[...]

Senior Data Scientist, Japan Retail Science

Arboricultural Project Manager (Highways)

Internal Account Manager

Trainee Store Manager

Data Science Manager / Up to £100,000 / Permanent / 2 days a week onsite

We are looking for aData Science Managerto join a growingData Science teamwithin a leading eCommerce organisation. This is an exciting opportunity to drive significant commercial value in a fast-paced environment.

This role will focus on optimising how we present content to customers-ensuring the right products are surfaced at the right time and through the right channels. We are looking for a highly skilled data scientist with a strong technical foundation and excellent communication skills, combined with a passion for applying data science to real-world commercial challenges.

This is a hybrid role, offering a mix of office and remote working. The company's main headquarters are based inLeicestershire, and we welcome applicants from across the UK.

About the Role

  • Collaborate with teams across the business to understand challenges and own the technical solutions, identifying further opportunities to deliver value.
  • Search optimisation - vector embedding of search terms and product items
  • Deep learning and regression modelling for product profitability forecasts
  • Work closely with data engineering and software development teams to define technical requirements and ensure timely delivery.
  • Analyse large volumes of data from various sources, including transactional, demographic, and online data, to build predictive models.
  • Apply machine learning techniques to personalise customer experiences and optimise content presentation.
  • Design and execute robust testing strategies to validate hypotheses and measure commercial impact.
  • Present insights and recommendations to senior stakeholders, including C-suite executives.
  • Proactively identify opportunities for personalisation and customer experience improvements.

About You

  • Strong expertise in a broad range ofdata science techniques, including regression, classification, and machine learning. Experience with deep learning or generative AI is a plus but not essential.
  • Proficiency in(Spark)SQL and Python. Experience with PySpark is beneficial but not required.
  • Experience designing and implementing robusttesting frameworks.
  • Strong analytical skills with keen attention to detail.
  • Excellent communication skills-comfortable presenting insights to a variety of audiences and crafting a compelling data-driven narrative.
  • Effective time management and ability toprioritise multiple projects.
  • Enthusiastic and eager to learn, with a collaborative yet self-sufficient working style.

This is an exciting opportunity to play a pivotal role in shapingdata-driven customer experiencesfor aleading eCommerce business. If you're passionate about data science and looking for a role where you can make a real commercial impact, we'd love to hear from you!

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.