Data Science Manager London, UK • Data & Analytics • Data Science +1 more London, UK Data & Ana[...]

Meta
London
2 days ago
Create job alert

As a Data Science Manager at Meta, you will help shape the future of the experiences we build for billions of people and hundreds of millions of businesses, creators, and partners around the world. You will apply your people leadership, project management, analytical, and technical skills, creativity, and product intuition to one of the largest data sets in the world. You will collaborate on a wide array of product and business problems with a wide range of cross-functional partners across Product, Engineering, Research, Data Engineering, Marketing, Sales, Finance, and others. You will influence product strategy and investment decisions with data, be focused on impact, and lead and grow an impact-oriented team. By joining Meta, you will become part of the analytics community dedicated to skill development and career growth in analytics and beyond.

About the role:

Product leadership:You will use data to understand the product and business ecosystem, quantify new opportunities, identify upcoming challenges, and shape product development to bring value to people, businesses, and Meta. You will help develop strategy and support leadership in prioritizing what to build and setting goals for execution.

Analytics:You will guide product teams using data and insights. You will focus on developing hypotheses and employ a varied toolkit of rigorous analytical approaches, different methodologies, frameworks, and technical approaches to test them.

Communication and influence:You won’t simply present data, but tell data-driven stories. You will convince and influence leaders using clear insights and recommendations. You will build credibility through structure and clarity, and be a trusted strategic partner.

People leadership:You will inspire, lead, and grow a team of data scientists and data science leaders.

Data Science Manager Responsibilities

  1. Lead a team of data scientists to develop strategies for our products that serve billions of people and hundreds of millions of businesses, creators, and partners around the world.
  2. Drive analytics projects end-to-end in partnership with Product, Engineering, and cross-functional teams to inform, influence, support, and execute product strategy and investment decisions.
  3. Influence product direction through clear and compelling presentations to leadership.
  4. Work with large and complex data sets to solve a wide array of challenging problems using different analytical and statistical approaches.
  5. Identify and measure success of product efforts through goal setting, forecasting, and monitoring of key product metrics to understand trends.
  6. Define, understand, and test opportunities and levers to improve the product, and drive roadmaps through your insights and recommendations.
  7. Contribute towards advancing the Data Science discipline at Meta, including but not limited to driving data best practices (e.g. analysis, goaling, experimentation), improving analytical processes, scaling knowledge and tools, and mentoring other data scientists.

Minimum Qualifications

  1. Currently has, or is in the process of obtaining, a Bachelor's degree or equivalent practical experience. Degree ideally should be completed before joining Meta.
  2. A minimum of 4 years of work experience (2+ years with a Ph.D.) in applied analytics, including a minimum of 2 years of experience managing analytics teams.
  3. Experience with data querying languages (e.g. SQL), scripting languages (e.g. Python), and/or statistical/mathematical software (e.g. R).
  4. Experience initiating and completing analytical projects with minimal guidance.
  5. Experience communicating results of analysis to leadership.

Preferred Qualifications

  1. Master’s or Ph.D. degree in Mathematics, Statistics, Computer Science, Engineering, Economics, or another quantitative field.
  2. Experience working in technology, consulting, or finance.
  3. Proven track record of leading impact-oriented analytics teams.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram, and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today—beyond the constraints of screens, the limits of distance, and even the rules of physics.

Meta is proud to be an Equal Employment Opportunity employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics.

Meta is committed to providing reasonable accommodations for qualified individuals with disabilities and disabled veterans in our job application procedures. If you need assistance or an accommodation due to a disability, fill out theAccommodations request form.

Apply for this job. Take the first step toward a rewarding career at Meta.

#J-18808-Ljbffr

Related Jobs

View all jobs

Technology Business Manager

BMS Account Manager

Pricing/Actuarial - Data Engineering Manager

Head of Product Management

Analytical Consultant

Technical Project Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.