Data Science Manager London, UK • Data & Analytics • Data Science +1 more London, UK Data & Ana[...]

Meta
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Science Manager, FP&A — Strategic Forecasting

Senior Data Science Leader for FP&A & Forecasting

Data Science Manager, Payments

Senior Data Science Manager - Financial Planning and Analysis

Data Science Manager, Payments

Data Science Manager, Payments

As a Data Science Manager at Meta, you will help shape the future of the experiences we build for billions of people and hundreds of millions of businesses, creators, and partners around the world. You will apply your people leadership, project management, analytical, and technical skills, creativity, and product intuition to one of the largest data sets in the world. You will collaborate on a wide array of product and business problems with a wide range of cross-functional partners across Product, Engineering, Research, Data Engineering, Marketing, Sales, Finance, and others. You will influence product strategy and investment decisions with data, be focused on impact, and lead and grow an impact-oriented team. By joining Meta, you will become part of the analytics community dedicated to skill development and career growth in analytics and beyond.

About the role:

Product leadership: You will use data to understand the product and business ecosystem, quantify new opportunities, identify upcoming challenges, and shape product development to bring value to people, businesses, and Meta. You will help develop strategy and support leadership in prioritizing what to build and setting goals for execution.

Analytics: You will guide product teams using data and insights. You will focus on developing hypotheses and employ a varied toolkit of rigorous analytical approaches, different methodologies, frameworks, and technical approaches to test them.

Communication and influence: You won’t simply present data, but tell data-driven stories. You will convince and influence leaders using clear insights and recommendations. You will build credibility through structure and clarity, and be a trusted strategic partner.

People leadership: You will inspire, lead, and grow a team of data scientists and data science leaders.

Data Science Manager Responsibilities

  1. Lead a team of data scientists to develop strategies for our products that serve billions of people and hundreds of millions of businesses, creators, and partners around the world.
  2. Drive analytics projects end-to-end in partnership with Product, Engineering, and cross-functional teams to inform, influence, support, and execute product strategy and investment decisions.
  3. Influence product direction through clear and compelling presentations to leadership.
  4. Work with large and complex data sets to solve a wide array of challenging problems using different analytical and statistical approaches.
  5. Identify and measure success of product efforts through goal setting, forecasting, and monitoring of key product metrics to understand trends.
  6. Define, understand, and test opportunities and levers to improve the product, and drive roadmaps through your insights and recommendations.
  7. Contribute towards advancing the Data Science discipline at Meta, including but not limited to driving data best practices (e.g. analysis, goaling, experimentation), improving analytical processes, scaling knowledge and tools, and mentoring other data scientists.

Minimum Qualifications

  1. Currently has, or is in the process of obtaining, a Bachelor's degree or equivalent practical experience. Degree ideally should be completed before joining Meta.
  2. A minimum of 4 years of work experience (2+ years with a Ph.D.) in applied analytics, including a minimum of 2 years of experience managing analytics teams.
  3. Experience with data querying languages (e.g. SQL), scripting languages (e.g. Python), and/or statistical/mathematical software (e.g. R).
  4. Experience initiating and completing analytical projects with minimal guidance.
  5. Experience communicating results of analysis to leadership.

Preferred Qualifications

  1. Master’s or Ph.D. degree in Mathematics, Statistics, Computer Science, Engineering, Economics, or another quantitative field.
  2. Experience working in technology, consulting, or finance.
  3. Proven track record of leading impact-oriented analytics teams.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram, and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today—beyond the constraints of screens, the limits of distance, and even the rules of physics.

Meta is proud to be an Equal Employment Opportunity employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics.

Meta is committed to providing reasonable accommodations for qualified individuals with disabilities and disabled veterans in our job application procedures. If you need assistance or an accommodation due to a disability, fill out the Accommodations request form.

Apply for this job. Take the first step toward a rewarding career at Meta.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.