Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

The Dot Collective
City of London
2 weeks ago
Create job alert

We are a new generation consultancy based across UK and EU and founded on the premises of the engineering excellence and empowering people to make an impact.

We work with all modern tech stacks and typically run agile scrum on all our projects.

About you

Are you passionate about data and its transformational powers? Do youlike being able to make a huge difference in a limited period of time? We might be just the right place for you.

Your key skills and capabilities:

  • Implementing cloud-native data platforms
  • Engineering scalable and reliable pipelines
  • Good knowledge of distributed computing with Spark
  • Understanding of cloud architecture principles and best practices
  • Hands-on experience in designing, deploying, and managing cloud resources
  • Excellent python and SQL skills
  • Agile ways of working
  • Experience in cloud automation and orchestration using tools such as CloudFormation or Terraform
  • Monitoring and performance tuning of cloud-based applications and services

Nice to haves: (MLOps):

  • Model Deployment & Serving – Deploy and manage ML models using MLflow, Azure ML, SageMaker, or similar, ensuring scalability and performance.
  • Monitoring & Retraining – Set up model drift detection, performance monitoring, and automated retraining
  • ML Pipelines & CI/CD – Automate end-to-end ML workflows

We expect you to have some knowledge about how to architect, design, develop, deploy, and operate a data platform.

Our promise to you

We will always see you as a human being and will do our very best to support your needs and wellbeing – well-designed co-working and collaboration spaces, remote working patterns that work for you, parenting leave, sabbaticals and ability to work on personal projects.

We believe that a geled team is worth its weight in gold – we will do everything we can to avoid breaking well-performing teams – your team will be stable across different projects and you will work with people you trust and like.

We are committed to prioritising the wellbeing of our employees. To fulfill this promise, we provide a comprehensive employee wellbeing program that includes mental health support, flexible working arrangements, wellness activities, and a positive work culture.

We recognise that the world of tech delivery has moved on significantly in the last 15 years and know a thing or two about how to bring projects over the line without experiencing lots of despair and burn-out. In fact, we like to believe that our projects are the opposite of that – they are run smoothly and most of the time are fun to work on.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.