Customer Data Quality Coordinator - Hybrid - £30k

Deverell Smith
City of London
6 days ago
Create job alert


Customer Data Validation Specialist - Hybrid - Central London

Location: St Paul's, London (Hybrid - 3 days in office / 2 days WFH)

  • £26,000 - £30,000 / hourly rate, paid weekly
  • Start Date: 2nd February 2026
  • Contract: 3 - months minimum

About the Role

Got a keen eye for detail and ready to launch your property career?

Our client is launching a new customer portal and needs immediate support to ensure customer data is accurate, consistent, and ready for go-live.



Why This Role?

  • Working for one of the biggest commercial landlords in the UK, you'll gain genuine and invaluable exposure to roles within the sector.

  • Hybrid working, with at least two days remote.

  • Supportive project leadership, you'll be trained up in your first week with regular check-ins on the project.

  • Ideal for someone looking to:

    • Build data, systems, and stakeholder experience

    • Get a foot in the door in commercial property (explicit experience in this field not required).

This is a hands-on, high-impact contract role, focused on cleaning and validating customer data across multiple sources, working closely with Property Managers and contacting customers directly where nee...

Related Jobs

View all jobs

Customer Data Quality Coordinator - Hybrid - £30k

Data Integrity & Billing Coordinator

Data Quality Coordinator

Senior Administrative Lead — Patient Services & Data Quality

Data Engineer (Data Science)

Master Data Quality & Governance Lead

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.