Business Applications Technology Sourcing Manager

Northampton
6 days ago
Create job alert

Purpose of the role

To optimise and address Barclays 3rd party spend requirements, including the definition, development and implementation of approaches for relevant spend categories and requirements with close collaboration with the business and execution of strategic sourcing and buying channel development/optimisation.

Accountabilities

Profile spend in category area and develop understanding of business strategy, business requirements, cost levers and opportunities. Collaboration with internal stakeholders to identify sourcing needs, develop requests for proposal and ensure sourcing activities align to the banks needs and priorities.

Planning and execution of sourcing events including RFP/ RFXs, negotiations to best meet the business requirements for value, speed, compliance, risk.

Monitoring and guiding of controls and compliance requirements to be met through the category and sourcing cycle from request to contract, including regulatory engagement, controls, audits, data quality etc….

Development, implementation and operation of policies and procedures for sourcing activities aligned to the policies, standards, relevant compliance and regulation.

Identification and delivery of change opportunities to improve effectiveness, control and efficiency of sourcing processes including buying channel optimisation for relevant categories of spend (catalogues, demand challenge etc.).

Identification of industry trends and development related to sourcing and category management by attending conferences, participating in training, and conducting market research on techniques and tools.

Assistant Vice President Expectations

To advise and influence decision making, contribute to policy development and take responsibility for operational effectiveness. Collaborate closely with other functions/ business divisions.

Lead a team performing complex tasks, using well developed professional knowledge and skills to deliver on work that impacts the whole business function. Set objectives and coach employees in pursuit of those objectives, appraisal of performance relative to objectives and determination of reward outcomes

If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L – Listen and be authentic, E – Energise and inspire, A – Align across the enterprise, D – Develop others.

OR for an individual contributor, they will lead collaborative assignments and guide team members through structured assignments, identify the need for the inclusion of other areas of specialisation to complete assignments. They will identify new directions for assignments and/ or projects, identifying a combination of cross functional methodologies or practices to meet required outcomes.

Consult on complex issues; providing advice to People Leaders to support the resolution of escalated issues.

Identify ways to mitigate risk and developing new policies/procedures in support of the control and governance agenda.

Take ownership for managing risk and strengthening controls in relation to the work done.

Perform work that is closely related to that of other areas, which requires understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub-function.

Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategy.

Engage in complex analysis of data from multiple sources of information, internal and external sources such as procedures and practises (in other areas, teams, companies, etc).to solve problems creatively and effectively.

Communicate complex information. 'Complex' information could include sensitive information or information that is difficult to communicate because of its content or its audience.

Influence or convince stakeholders to achieve outcomes.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave

Related Jobs

View all jobs

Business Applications Technology Sourcing Manager

Business Applications Technology Sourcing Manager

Business Applications Technology Sourcing Manager

Financial Data Warehouse

ICT Systems Administrator

Technical Data Architect

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.