BI Specialist (SQL / Azure) - Perm (FTC) - Hybrid

London
2 weeks ago
Create job alert

Role - BI Specialist (SQL / Azure)

Industry - Automotive

Type - Fixed term contract (3 months, extension thereafter)

Rate - £75,000 per annum, pro rata

Location - Hybrid, 50% of the month in the office (London, Victoria)

PURPOSE OF POST:

Experienced Microsoft / Azure Business Intelligence (BI) Specialist to design, build, and support BI solutions across the Microsoft stack, including SSAS, SSRS, and Power BI. The post holder will play a key role in delivering high-quality, enterprise-grade analytics for platforms, while also enabling integration with third-party reporting tools such as Tableau and Amazon QuickSight. The successful candidate will have strong proficiency in SQL and DAX, a solid understanding of Azure data architecture, and experience working in a cross-functional team comprising engineers, analysts, and product stakeholders.

QUALIFICATIONS / SKILLS / ATTRIBUTES

Microsoft BI Stack

Strong hands-on experience with SSAS (both multidimensional and tabular model development)
Experience developing and maintaining SSRS data models and paginated reports
Expertise with Power BI, including Power Query, DAX, measures, and visual designAzure Data Platform

Familiarity with Azure SQL DB, Synapse Analytics, Data Factory, and Azure Analysis Services
Experience managing data refresh strategies, gateways, and Power BI service deployments
Ability to design secure reporting environments with row-level security, role-based access, and Azure AD integrationIntegration & Interoperability

Experience connecting Microsoft BI tools with Tableau, Amazon QuickSight, or similar platforms
Understanding of REST APIs, Power BI Embedded, and programmatic data access patternsData Engineering & Modelling

Strong T-SQL skills for data retrieval and performance tuning
Knowledge of dimensional modelling, star/snowflake schemas, and data warehouse best practices Preferred Qualifications

Microsoft certifications such as DA-100, DP-500, or MCSE: BI
Familiarity with CI/CD for BI assets (e.g. Git integration for SSAS/Power BI)
Exposure to DevOps pipelines for automated deployments
Awareness of data cataloguing, data lineage, and governance standards

MAIN DUTIES INCLUDE:

BI Development & Reporting

Design, develop, and maintain SSAS cubes (tabular and multidimensional) aligned to reporting requirements
Build SSRS data models and reports, ensuring scalability and performance
Develop interactive Power BI dashboards using complex business logic in DAXIntegration & Interoperability

Enable interoperability with third-party tools like Tableau and Amazon QuickSight
Manage secure integrations between Power BI and Azure-hosted data sourcesPlatform Support & Governance

Configure row-level security, user access roles, and workspace settings
Monitor performance across data models and reports; implement best practices for query optimisation
Contribute to the creation of documentation, data standards, and governance artefactsCollaboration & Continuous Improvement

Work closely with data engineers and analysts to define and evolve reporting architecture
Support continuous delivery of BI assets via automated pipelines and DevOps tooling
Drive improvements in data quality, usability, and user self-serviceGCS is acting as an Employment Agency in relation to this vacancy

Related Jobs

View all jobs

Commercial Director

BI Manager - Security & NPPV Clearance Required

BI & Data Engineering Lead

Senior Business Intelligence Developer

Data Analyst - Business Intelligence Visualisation Specialist

BI and Data Engineering Lead

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.