Backend Software Engineer

CATCHES
Birmingham
1 week ago
Create job alert

Location:Fully remote with the opportunity of working in a co-working space local to you


About:

CATCHES are a SaaS start-up backed by some of the most influential names in luxury fashion globally. We've partnered with the global leaders in cloud computing and AI to integrate advanced 3D rendering, Artificial Intelligence (AI) and Visual Effects (VFX) techniques to create unparalleled shopping experiences for luxury fashion and exclusive events.


Role:

We are seeking a highly skilled Backend Software Engineer to join our team. The ideal candidate will have experience building APIs and backend services, ideally in C#.NET.

In this role, you’ll build robust, scalable, and secure backend systems powering our SaaS platform. You will collaborate closely with the frontend team, data engineers, and other stakeholders to deliver high-quality software solutions that meet our product's needs.

You’ll have input into technical direction and contribute to shaping backend architecture as we scale.


Responsibilities:

  • Design, develop, and maintain APIs and services primarily usingC#.NET.
  • Build scalable, fault-tolerant systems for a cloud-native environment (primarilyGCP).
  • Implement event-driven workflows usingRabbitMQ.
  • Collaborate with product, design, data, and frontend teams to ship end-to-end features.
  • Own your code in production, participate in code reviews, and improve system observability.
  • Champion clean code, security best practices, and scalable architecture.


Requirements:

  • 4+ years experience building backend systems, ideally in C#.NET.
  • Solid grasp ofPostgreSQLor equivalent relational databases.
  • Cloud deployment experience (GCP preferred, but AWS/Azure welcome).
  • Comfort withevent-driven architecturesandmessage queues.
  • Experience shipping production-grade systems with performance, security, and observability in mind.
  • Ability to work independently in a fast-moving, startup environment.
  • Strong communication skills and a collaborative mindset.
  • Experience delivering pragmatic solutions and implementing iterative design approaches.
  • Strong understanding of engineering fundamentals, including design patterns, SOLID principles, and clean code.


Nice to Have:

  • NoSQL Database experience.
  • Experience withKubernetesor other orchestration systems.
  • Exposure tobare metaldeployments or hybrid cloud environments.
  • DevOps practices: Infrastructure as Code, monitoring, and alerting.
  • Some experience with frontend development or WebGL/3D rendering pipelines.


What Working with Catches Looks Like:

  • Workfully remotewith optional coworking access.
  • Be part of asmall, experienced teamthat values shipping, experimentation, and autonomy.
  • Contribute early to product and architecture decisions.
  • Use cutting-edge tech to shape the future of immersive eCommerce.
  • Enjoy startup pace without burnout: async-first, high ownership, minimal meetings.


Tech Stack:

  • Languages: C#.NET (primary), Go, Python.
  • Databases: Postgres, Redis.
  • Messaging: RabbitMQ.
  • Infra: Docker, Kubernetes, GCP (primary), AWS, Azure & bare-metal.
  • CI/CD: GitHub Actions.

Related Jobs

View all jobs

Senior Backend Engineer - Data Engineer

Software Engineer

Software Engineer

Software Engineer

Lead Staff Software Engineer (Basé à London)

Senior Fullstack Engineer London, UK

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Non‑Technical Professionals: Where Do You Fit In?

Beyond Jupyter Notebooks Ask most people what a data‑science career looks like and they’ll picture Python wizards optimising XGBoost hyper‑parameters. The truth? Britain’s data‑driven firms need storytellers, strategists, ethicists and project leaders every bit as much as they need statisticians. The Open Data Institute’s UK Data Skills Gap 2024 places demand for non‑technical data talent at 42 % of all data‑science vacancies—roles focused on turning model outputs into business value and trustworthy decisions. This guide highlights the fastest‑growing non‑coding roles, the transferable skills many professionals already have, and a 90‑day action plan to land a data‑science job—no pandas required.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.

Data Science vs. Data Mining vs. Business Intelligence Jobs: Which Path Should You Choose?

Data Science has evolved into one of the most popular and transformative professions of the 21st century. Yet as the demand for data-related roles expands, other fields—such as Data Mining and Business Intelligence (BI)—are also thriving. With so many data-centric career options available, it can be challenging to determine where your skills and interests best align. If you’re browsing Data Science jobs on www.datascience-jobs.co.uk, you’ve no doubt seen numerous listings that mention machine learning, analytics, or business intelligence. But how does Data Science really differ from Data Mining or Business Intelligence? And which path should you follow? This article demystifies these three interrelated yet distinct fields. We’ll define the core aims of Data Science, Data Mining, and Business Intelligence, highlight where their responsibilities overlap, explore salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer sense of which profession could be your ideal fit—and how to position yourself for success in this ever-evolving data landscape.