Senior Backend Engineer - Data Engineer

St James's
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Backend Data Engineer (Laravel, APIs, ETL) - Remote

Senior Business Intelligence Developer

Senior Data Engineer x1/ Data Engineer x1 (Financial Services)

Senior Data Engineer x1/ Data Engineer x1 (Financial Services)

Senior Data Engineer (Financial Services)

Data Engineer

Our Energy client seeks a Senior Backend Engineer - Data Engineer to join their team in Mayfair, London.

We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.

Hybrid working is in play, with 3 days in the office and 2 days at home.

Senior Backend Engineer - Data Engineer - About the role:

My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.

You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.

This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.

Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.

Senior Backend Engineer - Data Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.

  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.

  • Develop and manage data pipelines, backend components, and supporting infrastructure.

  • Manage server resources and backend processing environments to ensure reliability and scalability.

  • Monitor and maintain application performance, availability, and data quality across production systems.

  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.

  • Write, test, and document code in line with quality standards and engineering best practices.

  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.

  • Support analysts and data scientists in deploying and operationalising analytics tools and models.

  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.

  • Stay current with technological advancements and promote a culture of continuous improvement.

  • Present technical solutions to stakeholders and train non-technical users on tools and workflows.

    Senior Backend Engineer - Data Engineer - Skills Required:

  • Python (FastAPI, Flask)

  • REST API development

  • Containerisation: Docker, Kubernetes

  • CI/CD: Azure DevOps, GitHub Actions

  • Software testing and documentation practices

  • SQL, PySpark, Databricks

  • Relational databases and data lake architecture

  • Model and data pipeline integration (e.g. MLflow)

  • Streamlit or other lightweight UI frameworks

  • Microsoft Azure (Functions, Storage, Compute)

  • Monitoring tools (Grafana, Prometheus, etc.)

  • Performance optimisation and resource management

  • Agile delivery practices (Jira, Azure Boards, etc.)

  • Strong communication with technical and business teams

  • Mentoring and knowledge sharing within the team

    Desirable Skills:

  • Experience in energy supply or trading

  • Familiarity with dbt or modular analytics tooling

  • Exposure to forecasting or optimisation workflows

  • Knowledge of React or frontend tools for internal apps

  • Networking or IoT integration experience

    What they offer:

  • A high-autonomy role in a flat, delivery-focused team

  • Ownership of backend systems for real-time analytics and automation

  • A fast-moving, hands-on culture with meaningful technical challenges

  • The opportunity to apply software and data engineering to real-world energy problems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.