Software Engineer

St James's
1 month ago
Applications closed

Related Jobs

View all jobs

Software Engineer

Software Engineer

Embedded Software Engineer

Senior Python Developer

Embedded Software Engineer

AI Software Engineer

Our energy client is seeking a software engineer to join their team in Mayfair, London.
We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.
Hybrid working is in play, with 3 days in the office and 2 days at home.
Software Engineer- About the role:
My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.
You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.
This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.
Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.
Software Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.
  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.
  • Develop and manage data pipelines, backend components, and supporting infrastructure.
  • Manage server resources and backend processing environments to ensure reliability and scalability.
  • Monitor and maintain application performance, availability, and data quality across production systems.
  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.
  • Write, test, and document code in line with quality standards and engineering best practices.
  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.
  • Support analysts and data scientists in deploying and operationalising analytics tools and models.
  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.
    Software Engineer - Skills Required:
  • Python (FastAPI, Flask) (or another asynchronous language/framework)
  • REST API development
  • RabbitMQ / Message queue
  • PostgreSQL
  • Databricks
  • Containerisation: Docker, Kubernetes
  • CI/CD: Azure DevOps, GitHub Actions
  • Relational databases and data lake architecture
  • Model and data pipeline integration (e.g. MLflow)
  • Microsoft Azure (Functions, Storage, Compute)
  • Monitoring tools (Grafana, Prometheus, etc.)
  • Mentoring and knowledge sharing within the team
    Senior Engineer - Desirable Skills:
  • Experience in energy supply or trading
  • Familiarity with dbt or modular analytics tooling
  • Exposure to forecasting or optimisation workflows
  • Knowledge of React or frontend tools for internal apps
    What they offer:
  • A high-autonomy role in a flat, delivery-focused team
  • Ownership of backend systems for real-time analytics and automation
  • A fast-moving, hands-on culture with meaningful technical challenges
  • The opportunity to apply software and data engineering to real-world energy problems

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.