Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Technical Architect - Data Science

TESTQ Technologies Limited
Leicester
1 week ago
Create job alert
TQUKI0480_4937 - Technical Architect - Data Science

Job Type: Permanent


Work Mode: Remote


Job title: Technical Architect - Data Science


Job Purpose:


TESTQ Technologies is an IT services and Solutions Company whose offerings span over a variety of industry sectors with strong technical, domain, and processexpertisehelping clients grow their businesses and decrease operational costs on a continuous basis in an ever-changing business environment.


The Technical Architect – Data Science is responsible for designing, developing, and implementing end-to-end data and AI solutions. This role bridges data engineering, data science, and architecture by defining scalable frameworks, guiding model deployment, and ensuring optimal use of cloud and big data technologies.


Job Description (Main Duties and Responsibilities):



  • Design and architect for end-to-end data science and AI solutions aligned with enterprise strategy.
  • Define scalable data architectures for ingestion, processing, storage, and analytics.
  • Lead the design of machine learning pipelines, model deployment frameworks, and MLOps solutions.
  • Collaborate with data scientists, engineers, and analysts to operationalize ML models in production.
  • Evaluate and recommend tools, frameworks, and best practices for data science and AI initiatives.
  • Ensure compliance with data governance, security, and privacy standards.
  • Provide technical leadership and mentorship to the data science and engineering teams.
  • Optimize cloud and on-premises data architectures for performance, cost, and scalability.
  • Drive innovation through proof-of-concepts (POCs) and pilot implementations of emerging AI/ML technologies.

Key Skills, Qualifications and Experience Needed [The candidate must demonstrate these in all stages of assessment]



  • A bachelor's degree in computer science, Information Technology, or related discipline.
  • 3 to 4 years of professional experience in Technical Architect – Data Science roles.
  • Should have strong proficiency in programming and scripting languages such as Python, R, SQL, Java, Scala, and Shell scripting.
  • They should be adept at using data science and machine learning libraries including NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch, Keras, XGBoost, and LightGBM for building and deploying advanced analytical models.
  • A solid understanding of data engineering and big data ecosystems is essential, with hands-on experience using Apache Airflow, Luigi, and dbt for data workflow orchestration, and familiarity with Hadoop, Spark, Hive, Kafka, and Flink for distributed data processing.
  • Expertise in working with both relational and NoSQL databases such as PostgreSQL, MySQL, Oracle, MongoDB, Cassandra, and Redis is required, along with experience in managing data lakes and data warehouses like Snowflake, Databricks, Amazon Redshift, Google BigQuery, and Azure Synapse.
  • The architect should have deep experience with cloud platforms—including AWS (S3, Glue, SageMaker, EMR, Lambda), Microsoft Azure (Data Lake, Synapse, ML Studio, Databricks), and Google Cloud Platform (BigQuery, Vertex AI, Dataflow, AI Platform)—and the ability to design scalable, cloud-native data solutions.
  • Proficiency in MLOps and DevOps tools such as MLflow, Kubeflow, DVC, and TensorFlow Extended (TFX) is required to enable model lifecycle management.
  • Knowledge of CI/CD pipelines using tools like Jenkins, GitHub Actions, Azure DevOps, or CircleCI, and experience with containerization and orchestration through Docker, Kubernetes, and Helm, is highly desirable. Familiarity with model monitoring and governance tools such as Evidently AI, WhyLabs, and Neptune.ai will be advantageous.
  • The role also requires expertise in data visualization and business intelligence tools including Power BI, Tableau, Looker, Superset, Plotly, and Dash for translating analytical insights into actionable business intelligence.
  • Additionally, strong understanding of API design and integration (REST, GraphQL), version control systems (Git, GitLab), and data security and compliance frameworks such as GDPR and HIPAA is important.

Qualifications: Bachelor's degree or above in the UK or Equivalent.


Salary: GBP 55,000 to GBP 65,000 per annum


Published Date: 03 November 2025


Closing Date: 02 December 2025


Evaluation: CV Review, Technical Test, Personal and Technical Interview and References


Job Type: Full-time, Permanent [Part time and Fixed Term option is available]


#J-18808-Ljbffr

Related Jobs

View all jobs

Technical Architect - Data Science

Data Architect

Data Architect - B2B SAAS Software Product Development

Data Architect- Senior Manager

Lead Data Architect

Data Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.