Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Systematic Macro Quantitative Researcher

Undisclosed
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Quantitative Researcher – Systematic Macro Strategies

Senior Quantitative Researcher – Systematic Macro & Execution Alpha

Quantitative Researcher – Macro Systematic Strategies

Macro Quantitative Researcher

Python Quantitative Researcher - FX- Multi-Asset Class Systematic Trading

Senior Quantitative Researcher - Macro - Man Group plc

Our client, a globally established and highly prestigious multi-platform Hedge Fund, are seeking a Systematic Macro Quant Researcher to join a newly created team within their business. In this dynamic and collaborative role, you will be responsible for developing and implementing cutting-edge quantitative models and strategies across global macro markets and asset classes. You will work closely with world-class researchers, portfolio managers, and technologists to identify and capitalize on inefficiencies in a wide range of asset classes, including equity indexes, fixed income, rates, commodities and FX. You will also help to systematise processes across teams, and build out the systematic infrastructure within the business.

Key Responsibilities:

Quantitative Research & Strategy Development: Conduct rigorous quantitative research to identify market inefficiencies and develop systematic trading strategies. Utilize statistical, econometric, and machine learning techniques to model macroeconomic relationships and forecast asset prices.

Data Analysis & Signal Generation: Analyse large and complex datasets, including macroeconomic indicators, market prices, and alternative data sources, to extract predictive signals. Employ advanced data science methodologies to enhance the robustness and accuracy of models.

Model Implementation & Optimization: Collaborate with the technology and trading teams to build and implement quantitative infrastructure, models and strategies in a live trading environment. Continuously optimize and refine models to adapt to changing market conditions.

Risk Management: Work closely with risk management teams to assess and manage the risks associated with trading strategies. Develop risk models that account for various market scenarios and stress conditions.

Requirements:

Strong academic background: Ph.D. or Master's degree in a quantitative discipline such as Economics, Finance, Mathematics, Statistics, Computer Science, or a related field.

Strong programming skills in Python, R, or a similar language, and the ability to write clean code.

Experience with statistical analysis, econometrics, and machine learning techniques.

Proficiency in working with large datasets and data analysis tools.

Familiarity with financial markets and economic theory.

Proven track record of developing and implementing successful quantitative trading strategies, preferably within a global macro context.

3-5 years’ experience in a high-performance trading environment, such as a hedge fund, proprietary trading firm, or investment bank.

Due to demand, we are advertising this role anonymously. If you would prefer to speak to someone before submitting a CV, please send a blank application to the role and someone will be in touch to discuss. We can only respond to highly qualified candidates.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.