Quantitative Researcher - Systematic Equities

McGregor Boyall Associates
City of London
2 days ago
Create job alert


Quantitative Researcher - Systematic Equities

Location: London or New York
Industry: Hedge Funds
Working Model: On-site

Overview

This position offers the chance to join a systematic equities research function responsible for building and scaling differentiated alpha across global equity markets.

The mandate is pure research: identifying new sources of equity alpha, validating them rigorously, and seeing successful ideas deployed with real capital. Researchers operate end-to-end, with ownership over data selection, signal design, testing, and ongoing performance evaluation.

This is particularly well suited to researchers who already run live signals but want greater influence over the research agenda, cleaner decision-making, and a clearer line of sight between their work and outcomes.

Responsibilities:

  • Researching, designing, and validating new systematic equity alpha signals across regions and time horizons
  • Owning the full research lifecycle: data exploration, feature engineering, modelling, testing, and performance analysis
  • Working closely with other senior researchers to combine signals into robust portfolios
  • Contributing to portfolio construction and risk discussions, with clear visibility of live outcomes
  • Leveraging an advanced research and execution ...

Related Jobs

View all jobs

Quantitative Researcher

Quantitative Researcher - Systematic Equities

Quantitative Researcher - Systematic Equities

Quantitative Researcher...

Quantitative Researcher

Quantitative Researcher

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.