Senior Staff Data Engineer

Visa Inc.
Cambridge
1 day ago
Create job alert
What it's all about -

ThePayments Foundation Modelsteam is a new, high-impact initiative within Visa’s Data Science organization. Based in Cambridge, UK, and working closely with global Visa engineering and product teams, the group’s mission is to build the next generation ofpayments-focused foundation AI models. These models will power a range of premium Risk and Identity Solutions (RaIS) products, such as fraud scores, with the goal of generatingmore than 100M dollars in new revenue by FY2030, and may be extended into other domains such ascredit risk modellingoragentic commerce personalization.


As Senior Consultant Data Engineer you will design, build, optimise, and maintain data tooling and pipelines that power the development and deployment of Visa’s Large Transaction Models. You will:


Key Responsibilities

  • Design and develop high-performance data pipelines and tooling to support Large Transaction Model training and analysis at global scale.
  • Optimize Spark pipelines and workflows for speed and efficiency across Visa’s evolving data warehousing and data analytics infrastructure.
  • Provide technical leadership and guidance to other members of the agile team, working with cross-functional stakeholders to align technical solutions with product goals.
  • Collaborate with data scientists to build production tooling and pipelines for training PyTorch-based machine learning models.
  • Ensure data systems meet Visa’s standards for security, reliability, scalability, and compliance.
  • Mentor junior engineers and contribute to Visa’s software engineering best practices.
  • Liaise with global technology and product teams to share tools, patterns, and innovations.
  • Drive continuous improvement of team processes and shared workflows.

This is a hybrid position. Expectation of days in the office will be confirmed by your Hiring Manager.


What we'd like from you -

  • Academic background to at least undergraduate level in a relevant discipline, e.g., Computer Science, Mathematics, Physics, or Engineering.
  • Minimum 5 years experience in collaborative software engineering roles.
  • Mastery of Apache Spark in large scale, distributed computing environments.
  • Proven track record of optimizing Spark queries for performance at scale.
  • Familiarity with typical patterns and trade offs in columnar file formats (eg: Parquet), open table formats (eg: iceberg) and analytical query engines.
  • Strong experience building and maintaining machine learning pipelines.
  • Familiarity with modern software engineering principles and practices (e.g. agile, clean code, IDEs, source control, testing, code review).
  • Familiarity with PyTorch models and their integration into production systems.
  • Proficiency with data workflow orchestration tools (e.g., Airflow, Luigi, or equivalent).
  • Strong programming skills in Python.
  • Experience working in Agile or Scrum environments and communicating with non technical stakeholders.
  • Background in payments or financial services data engineering.
  • Experience in a technical leadership or management role.
  • Familiarity with a systems programming language (eg: C++ or Rust).
  • Experience with Click house.
  • Familiarity with inference optimizations for deep learning models.
  • Experience with cloud-based big data platforms (e.g., AWS EMR, GCP Dataproc, Azure HDInsight , Databricks).
  • Exposure to MLOps practices and tools.

Visa is an EEO Employer. Qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, sexual orientation, gender identity, disability or protected veteran status. Visa will also consider for employment qualified applicants with criminal histories in a manner consistent with EEOC guidelines and applicable local law.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Staff Data Engineer

Staff Data Engineer

Staff Data Engineer - Scale a Global Data Function (Hybrid)

Staff Data Analyst Engineering · Norwich · Fully Remote

Data Engineer

Senior Football Data Engineer: Build Data Pipelines

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.