Senior Product Data Scientist

Checkout.com
London
1 year ago
Applications closed

Related Jobs

View all jobs

Benefit Risk Management Center of Excellence Data Scientist

Senior Data Scientist - Live Product Analytics

Senior DSX Data Scientist

Senior DSX Data Scientist

Senior Data Scientist

Senior Data Scientist

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.

Company Description

Checkout.com is one of the most exciting fintechs in the world. Our mission is to enable businesses and their communities to thrive in the digital economy. We're the strategic payments partner for some of the best known fast-moving brands globally such as Wise, Hut Group, Sony Electronics, Homebase, Henkel, Klarna and many others. Purpose-built with performance and scalability in mind, our flexible cloud-based payments platform helps global enterprises launch new products and create experiences customers love. And it's not just what we build that makes us different. It's how.

We empower passionate problem-solvers to collaborate, innovate and do their best work. That's why we're on the Forbes Cloud 100 list and a Great Place to Work accredited company. And we're just getting started. We're building diverse and inclusive teams around the world - because that's how we create even better experiences for our merchants and our partners. And we need your help. Join us to build the digital economy of tomorrow.

Job Description

As a Senior Product Data Scientist, you'll work as part of a cross-functional team alongside product managers, designers, and software and analytics engineers, using data and your expertise to influence and drive the strategy of our products. You'll help define how we measure the success of our products, collaborate with engineers on how we collect data, design and help build reports/dashboards, and run analyses to find product improvement opportunities. You'll be a co-owner of a product, driving it to success in partnership with other cross-functional team members.

You'll also be part of the broader data function, a team of Data Engineers, Analytics Engineers, Data Scientists, and Data Product Managers.

We're a new but highly visible function within Checkout.com, so this is an exciting opportunity to drive a positive impact.

How you'll make an impact:

  • You'll be responsible for analytics of a product domain. You'll define, measure, and present metrics, deliver actionable insights
  • Contribute product roadmaps through data-based recommendations and continuously define high-impact areas for improvement.
  • Working closely with Data Analytics Engineers and Software Engineers to make sure we collect and model the right data to produce relevant business insights
  • Foster data culture across products and technology by actively sharing insights and ideas and building positive relationships with colleagues
  • Build experiments and analysis frameworks to quantify the ROI of product development.
  • Lead by example your team and the broader data community to apply best practices in analytics from data collection to analysis.

Qualifications

  • Strong communicator, you're able to explain complex technical topics to non-technical team members
  • Experience conducting experiments, building measurement frameworks, and validating the results with relevant quantitative methods
  • Strong analytical mind and demonstrable experience in converting ambiguous problems into structured and data-informed solutions
  • Excellent data interrogation skills with SQL
  • Knowledge of applied statistics (e.g., hypothesis testing, regression)

Additional Information

Apply without meeting all requirements statement

If you don't meet all the requirements but think you might still be right for the role, please apply anyway. We're always keen to speak to people who connect with our mission and values.

Hybrid Working Model:All of our offices globally are onsite 3 times per week (Tuesday, Wednesday, and Thursday). We've worked towards enabling teams to work collaboratively in the same space, while also being able to partner with colleagues globally. During your days at the office, we offer amazing snacks, breakfast, and lunch options in all of our locations.

We believe in equal opportunities

We work as one team. Wherever you come from. However you identify. And whichever payment method you use.

Our clients come from all over the world - and so do we. Hiring hard-working people and giving them a community to thrive in is critical to our success.

When you join our team, we'll empower you to unlock your potential so you can do your best work. We'd love to hear how you think you could make a difference here with us.

We want to set you up for success and make our process as accessible as possible. So let us know in your application, or tell your recruiter directly, if you need anything to make your experience or working environment more comfortable. We'll be happy to support you.

Take a peek inside life at Checkout.com via

Apply without meeting all requirements statement

If you don't meet all the requirements but think you might still be right for the role, please apply anyway. We're always keen to speak to people who connect with our mission and values.

We believe in equal opportunities

We work as one team. Wherever you come from. However you identify. And whichever payment method you use.

Our clients come from all over the world - and so do we. Hiring hard-working people and giving them a community to thrive in is critical to our success.

When you join our team, we'll empower you to unlock your potential so you can do your best work. We'd love to hear how you think you could make a difference here with us.

We want to set you up for success and make our process as accessible as possible. So let us know in your application, or tell your recruiter directly, if you need anything to make your experience or working environment more comfortable. We'll be happy to support you.

Take a peek inside life at Checkout.com via

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.