Senior Data Scientist/ Senior Risk Scientist

Bristol
2 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist (Climate & Geospatial)

Senior Data Scientist (Document Search)

Senior Data Scientist

Senior Data Scientist

Data Scientist (Knowledge Graph)

Associate Director, Data Science and Innovation (Basé à London)

Senior Risk Scientist Opportunity in Bristol, UK

Location: Bristol, UK (Hybrid 2 days in the office)
Permanent role
Salary: £80,0000-£95,000 dependant on experience

About the Company:

My client is a leading player in the cyber reinsurance industry, focused on innovative solutions to manage and mitigate cyber risks. Utilising cutting-edge technology and data analytics, they develop proprietary models that drive the business forward.

The Role:
Seeking an experienced and highly skilled Senior Risk Scientist to join the dynamic team in Bristol. In this crucial role, you will be at the forefront of developing and refining proprietary cyber risk model, Cybertooth. If you have a strong background in large-scale stochastic model development, high-performance scientific computing, and expertise in statistical modelling and probability, this could be the perfect opportunity for you.

Key Responsibilities:

Contribute significantly to the development and enhancement of Cybertooth, ensuring its reliability in assessing cyber risks.
Collaborate with cross-functional teams to integrate new data sources and methodologies.
Conduct advanced statistical analyses, industry threat assessments, and reporting to support cyber risk evaluation.
Optimise the computational performance and scalability of Cybertooth simulations.
Provide technical leadership and mentorship to junior team members.
Stay informed on the latest advancements in cyber risk measurement, data science, and high-performance computing.What We're Looking For:

At least 5 years of experience in a related field, such as risk/catastrophe modelling, quantitative finance, or data science, with a focus on large-scale simulations.
Proven expertise in stochastic model development and high-performance scientific computing.
Proficiency in scientific Python; experience with Spark, CUDA, SQL, and Databricks is a plus.
Strong problem-solving abilities and the capacity to work both independently and collaboratively.
Excellent communication skills, with the ability to present complex technical information to non-technical audiences.
A degree in a STEM field or equivalent industrial experience.Why Join Us?

Competitive salary and benefits package, including a 5% pension, 28 days of holiday plus bank holidays, private medical insurance, and death-in-service benefit.
Opportunity to work with cutting-edge technology and innovative solutions in the cyber reinsurance industry.
A collaborative and inclusive work environment.
Career growth and development opportunities.This is an exciting opportunity to contribute to a forward-thinking company that is shaping the future of cyber risk management. If you're ready to take on a new challenge and make a significant impact, we'd love to hear from you

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.