Senior Data Scientist – Risk Modelling

ADLIB
London
6 days ago
Create job alert

We’re looking for a commercially minded Senior Data Scientist with a passion for building risk models. If you’re the kind of data scientist who doesn’t just tweak existing models but creates them from scratch, this is your chance to make a real impact!


What you’ll be doing

This role is all about risk (we can’t stress that enough!). We’re looking for someone technically strong (likely a data scientist or similar) with a proven background in modelling risk across different environments.


As part of a specialist Risk Modelling Team, you’ll operate in a collaborative, matrix‑style environment. Your work will include model development, enhancement, and forecasting, ensuring outputs are accurate, robust, and clearly communicated.


This role is also a chance to work on variations of risk; you’ll model across multiple areas and projects, outside of a highly regulated environment. They need someone adaptable, curious, and genuinely passionate about risk modelling. Your projects could include insurance risk, asset risk, financial risk, pricing risk, credit risk, climate risk and more.


You’ll thrive on building and enhancing models from the ground up, bridging the gap between complex statistical techniques and clear, actionable insights for stakeholders. You’ll work closely with senior leaders, collaborate across functions, and play a key role in strategic projects. Sound like you? Apply now!


What experience you’ll need

  • Strong background in risk modelling and using these insights to inform business decisions
  • Proven experience building risk models from scratch and enhancing existing ones
  • Excellent skills in R, Python, or SAS
  • Experience leading complex model updates (both operational enhancements and full development projects) with clear communication of outcomes
  • Ability to present to stakeholders and translate risk issues into business applications
  • Exposure to multiple risk types (insurance, pricing, climate, asset, credit, etc.)
  • Knowledge of model risk management
  • Experience working outside regulated risk environments
  • Desirable: Industry experience in finance, automotive, or similar sectors, plus exposure to advanced techniques like machine learning or predictive modelling

What you’ll get in return

Up to £90,000 plus a 20%+ bonus, alongside a comprehensive benefits package. You’ll work from the London office three days per week, with flexibility to work remotely the rest of the time.


What’s next?

Apply with your CV, and we’ll be in touch to arrange a conversation if it’s a good fit! Got questions? Drop Tegan a message.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.