Senior Data Scientist - Private Equity Consulting

Harnham
City of London
4 days ago
Create job alert

Do you want to work on interesting data problems to drive commercial value?

Have you taken models from prototype to production in messy, real-world environments?

Are you ready to work with senior stakeholders in private equity portfolios?


We’re hiring for a fast-growing, London-based investment-focused AI firm that partners with private equity and investment groups to embed data science and machine learning into portfolio companies. Backed by recent investment and partnered with leading European PE firms, the business is scaling its deployment team to deliver measurable value across diverse industries.


This Senior Data Scientist / Senior Machine Learning Engineer role sits within the deployment group, working hands-on with portfolio companies post-deal to design, build, and deploy ML solutions that improve real business outcomes. Projects are varied, impact-driven, and typically delivered over 2–6 month cycles.


Key Responsibilities

  • Own end-to-end ML delivery from problem definition through deployment
  • Build and productionise models across forecasting, pricing, churn, segmentation, fraud, and NLP use cases
  • Work closely with data engineers and cloud infrastructure to scale solutions
  • Translate technical work into clear commercial impact for senior stakeholders
  • Contribute to code quality, deployment standards, and best practices


Key Details

  • Salary: £90,000–£110,000 base + 15–20% discretionary bonus
  • Working model: Hybrid, 2–3 days per week in a central London office (flexible)
  • Tech stack: Python, SQL, Databricks, AWS/GCP/Azure, Git, Docker
  • Benefits: 7% employer pension, private medical (family cover), life assurance, income protection, 25 days holiday + bank holidays
  • Visa: Sponsorship available


Interested? Please apply below.

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.