National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Scientist...

Chambers & Partners
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Consumer Behaviour – exciting ‘scale up’ proposition

Senior Data Scientist - Consumer Lending

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Speech-To-Text

Senior Data Scientist

Overview
We’re seeking a Senior Data Scientist to lead the development of advanced analytics and AI/ML solutions that unlock real value across our business. This is a contract role for 6 months.

In this contract role, you'll work with proprietary and B2B research datasets to design, deliver, and scale data-driven products. Collaborating closely with teams in Product, Research, and Technology, you'll help turn strategic ideas into working MVPs—ensuring high standards of methodology, quality, and business relevance throughout.

You’ll also help shape the data science environment by working alongside our tech teams to support a robust and flexible infrastructure, including sandbox environments for onboarding and evaluating new data sources.

This is a great opportunity for a self-driven, impact-oriented data scientist who thrives in a fast-paced, cross-functional setting—and is eager to deliver meaningful results in a short time frame.

Main Duties and Responsibilities

  1. Spearhead and execute complex data science projects using a combination of open-source and cloud tools, driving innovation and delivering actionable insights.
  2. Develop and deploy advanced machine learning models using cloud-based platforms.
  3. Collaborate with product managers and designers to ensure the feasibility of product extensions and new products based on existing proprietary, quantitative, and qualitative datasets.
  4. Work with outputs from Research and historical data to identify consistent and inconsistent product features and document precise requirements for improved consistency.
  5. Collaborate with designers, Tech colleagues, and expert users to come up with engaging ways to visualize data and outliers/exceptions for non-technical audiences.
  6. Design and develop novel ways to showcase and highlight key analysis from complex datasets, including joining across datasets that do not perfectly match.
  7. Collaborate with Product, Tech, Research, and other stakeholders to understand and define a new, marketable product from existing data.
  8. Create and present progress reports and ad-hoc reviews to key stakeholders and teams.
  9. Constantly think about and explain to stakeholders how analytics “products” could be refined and productionized in the future.
  10. Work with Tech colleagues to improve the Data Science workspace, including providing requirements for Data Lake, Data Pipeline, and Data Engineering teams.
  11. Expand on the tools and techniques already developed.
  12. Help us understand our customers (both internal and external) better so we can provide the right solutions to the right people, including proactively suggesting solutions for nebulous problems.
  13. Be responsible for the end-to-end Data Science lifecycle: investigation of data, from data cleaning to extracting insights and recommending production approaches.
  14. Responsible for demonstrating value addition to stakeholders.
  15. Coach, guide, and nurture talent within the data science team, fostering growth and skill development.

    Skills and Experience

  • Delivering significant and valuable analytics projects/assets in industry and/or professional services.
  • Proficiency in programming languages such as Python or R, with extensive experience with LLMs, ML algorithms, and models.
  • Experience with cloud services like Azure ML Studio, Azure Functions, Azure Pipelines, MLflow, Azure Databricks, etc., is a plus.
  • Experience working in Azure/Microsoft environments is considered a real plus.
  • Proven understanding of data science methods for analyzing and making sense of research data outputs and survey datasets.
  • Fluency in advanced statistics, ideally through both education and experience.

    Person Specification

  • Bachelor's, Master's, or PhD in Data Science, Computer Science, Statistics, or a related field.
  • Comfortable working with uncertainty and ambiguity, from initial concepts through iterations and experiments to find the right products/services to launch.
  • Excellent problem-solving and strong analytical skills.
  • Proven aptitude to learn new tools, technologies, and methodologies.
  • Understanding of requirements for software engineering and data governance in data science.
  • Proven ability to manage and mentor data science teams.
  • Evidence of taking a company or department on a journey from Analytics to Data Science to AI and ML deployed at scale.
  • Ability to translate complex analysis findings into clear narratives and actionable insights.
  • Excellent communication skills, with the ability to listen and collaborate with non-technical and non-quantitative stakeholders.
  • Experience working with client-facing and Tech teams to ensure proper data collection, quality, and reporting formats.
  • Experience presenting investigations and insights to audiences with varying skill sets and backgrounds.
  • Nice to have: experience working with market research methods and datasets.
  • Nice to have: experience in the professional services or legal sector.
  • B2B market research experience would be a significant plus.

    #J-18808-Ljbffr
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs Skills Radar 2026: Emerging Tools, Languages & Platforms to Learn Now

The UK’s data science job market is evolving fast—from forecasting models and AI assistants to real-time decision systems. In 2026, data scientists aren’t just expected to build models—they’re responsible for shaping insights that fuel everything from patient care to predictive banking. Welcome to the Data Science Jobs Skills Radar 2026—your essential annual guide to the languages, tools, and platforms driving demand across the UK. Whether you’re entering the job market or reskilling mid-career, this roadmap helps you prioritise the skills that matter most right now.

How to Find Hidden Data Science Jobs in the UK Using Professional Bodies like the RSS, BCS & More

The data science job market in the UK is thriving—but also increasingly competitive. As organisations in finance, healthcare, retail, government, and tech accelerate digital transformation, the demand for data talent has soared. Yet many of the best data science jobs are never posted publicly. They’re shared behind closed doors—within professional networks, at invite-only events, or through member-only mailing lists and specialist interest groups. These “hidden” roles are often filled through referrals, collaborations, or direct outreach to trusted experts. In this guide, we’ll show you how to unlock these hidden opportunities by engaging with key UK professional bodies such as the Royal Statistical Society (RSS), BCS (The Chartered Institute for IT), and Turing Society, plus communities like PyData and AI UK. You’ll learn how to use directories, CPD events, and networks to move beyond job boards—and into roles where you’re approached, not just applying.

How to Get a Better Data Science Job After a Lay-Off or Redundancy

Redundancy can be tough to face, especially in a competitive field like data science. But it’s important to know: your experience, analytical thinking, and modelling skills are still in demand. Across sectors like healthcare, finance, e-commerce, government and AI startups, UK employers continue to seek data scientists who can deliver value through insight, prediction, and automation. This guide will walk you through how to bounce back from redundancy with purpose and clarity—whether you're a data analyst looking to step up, a mid-level data scientist, or a machine learning specialist seeking a better-aligned opportunity.