Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist - Drug Discovery - fully remote in UK

Hays
Altrincham
2 weeks ago
Create job alert

Your new company
You will be joining an expanding consultancy focused on supporting innovation in the pharmaceutical and biotech industry. Its specialist research division is dedicated to solving complex biological problems through advanced statistical modelling and ML/AI. They have an experienced team with a strong track record and are looking for an extra person to join them to work on statistical method development and application to real-world drug discovery & development problems.


Your new role
As a Senior Data Scientist, your work will centre on methodological innovation. You will:

  • Design and implement novel statistical approaches to interrogate large-scale genomic datasets
  • Develop new models to quantify genetic contributions to disease and complex traits
  • Evaluate and refine existing analytical frameworks to improve accuracy and interpretability
  • Ensure scientific rigour and reproducibility in all method development
  • Translate complex statistical outputs into meaningful insights for technical and non-technical audiences
  • Collaborate with engineering teams to embed new methods into scalable data pipelines
  • Contribute to peer-reviewed publications that showcase methodological advancements
  • Stay ahead of emerging techniques in statistical genetics and bioinformatics, integrating them into ongoing research


While pharma/biotech or consultancy industry experience is preferred, this role could also suit a recent PhD graduate or junior post-doc researcher with strong statistical method development.

The role can be fuly home based, or you can work from one of the company's offices across the UK.


What you'll need to succeed

  • PhD (or Master's with substantial experience) in statistics, maths, physics, data science, computing, statistical genetics or a related field with a strong methodological focus (or equivalent experience)
  • Demonstrated ability to create and validate new statistical / analytical models or workflows
  • Strong programming skills in R or Python, with experience in statistical libraries and bioinformatics tools
  • Familiarity with biobank-scale datasets and genomic databases
  • Experience with cloud platforms and scalable computing environments
  • A publication record that reflects methodological contributions to the field
  • Good communication skills, especially in explaining statistical concepts to diverse audiences



What you'll get in return
You'll be joining a highly experienced team doing cutting-edge work to support drug discovery & development efforts at a wide range of pharmaceutical and biotech companies. As well as lots of opportunities to develop your skills and career, this role offers a good package and the chance to make a significant impact.


What you need to do now
If you're interested in this role, click 'apply now' to forward an up-to-date copy of your CV, or call us now.
If this job isn't quite right for you but you are looking for a new position, please contact us for a confidential discussion on your career.

Keywords: Statistical, Genetics, Bioinformatics, Genomics, Data, Scientist, Lead, Senior, GWAS, Polygenic, Risk, Score, Mendelian, Randomisation, Causal, Inference, Computational, Biology, Genetic, Epidemiology, Variant, Annotation, Pathway, Method, Enrichment, Protein, Interaction, Networks, Biobank, Research, Modelling, Development

Related Jobs

View all jobs

Senior Data Scientist - Computer Vision

Senior Data Scientists

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly evolved into one of the most important disciplines of the 21st century. Once a niche field combining elements of statistics and computer science, it is now at the heart of decision-making across industries. Businesses, governments, and charities rely on data scientists to uncover insights, forecast trends, and build predictive models that shape strategy. In the UK, data science has become central to economic growth. From the NHS using data to improve patient outcomes to financial institutions modelling risk, the applications are endless. The UK’s thriving tech hubs in London, Cambridge, and Manchester are creating high demand for data talent, with salaries often outpacing other technology roles. Yet despite its current importance, data science is still in its infancy. Advances in artificial intelligence, quantum computing, automation, and ethics will transform what data scientists do. Many of the most vital data science jobs of the next two decades don’t exist yet. This article explores why new careers are emerging, the roles likely to appear, how current jobs will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Data Science Jobs: The Best Months to Apply & Why

The UK's data science sector has matured into one of Europe's most intellectually rewarding and financially attractive technology markets, with roles spanning from junior data analysts to principal data scientists and heads of artificial intelligence. With data science positions commanding salaries from £30,000 for graduate data analysts to £140,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this intellectually stimulating and rapidly evolving field. Unlike traditional analytical roles, data science hiring follows distinct patterns influenced by business intelligence cycles, research funding schedules, and machine learning project timelines. The sector's unique combination of mathematical rigour, business impact requirements, and cutting-edge technology adoption creates predictable hiring windows that strategic professionals can leverage to advance their careers in extracting insights from tomorrow's data. This comprehensive guide explores the optimal timing for data science job applications in the UK, examining how enterprise analytics strategies, academic research cycles, and artificial intelligence initiatives influence recruitment patterns, and why strategic timing can determine whether you join a pioneering AI research team or miss the opportunity to develop the next generation of intelligent systems.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.