Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientists

London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist - Personalisation / Segmentation

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer_London

Senior Data Scientists – London – Hybrid

Job description
BDO Regulatory Solutions are currently recruiting for a Senior Data Scientists to join our client, a regulated firm, based in London.

We are offering an initial 6 month contract starting as soon as possible with a competitive rate, employed via an Umbrella company.

About the role:
We are looking for talented and experienced data scientists with experience to join our programme. Solid knowledge and experience of AI and ML is essential.

Key responsibilities include:
Design and develop AI / ML based solutions
Work with other data scientists to build and deploy production-level solutions
Troubleshoot and debug code
Work with other teams to understand and solve business problems
About you:
Python (pandas, NumPy, scikit-learn): For data wrangling, modelling, and feature engineering
SQL: For querying structured data sources
Model Development & Validation: Experience with classification, unsupervised learning (e.g. outlier detection), and ranking models
Machine Learning Deployment: Familiarity with containerised deployment (e.g. Podman, SageMaker, DSW pipelines)
Version Control (Git): To maintain reproducible and collaborative workflows
Time-Series Analysis: To assess risk trends over financial years
Exploratory Data Analysis (EDA): To spot early signals or risk clusters
Desirable:
Rank Aggregation/Ensemble Techniques: Understanding methods like Robust Rank Fusion (RRF)
Model Explainability Tools: e.g. SHAP, LIME to support interpretability
Experience with Model Monitoring & Drift Detection
Experience in RegTech/FinCrime/Data-led Supervision Projects is a plus
Additional Information:
Location: London - Hybrid 2 days onsite, 3 from home
Duration: 6 months
Day Rate: Competitive rate, to Umbrella company.

Are you ready to join the team? Click on the link to apply

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.