Senior Data Scientist

Kleboe Jardine Ltd
Nottingham
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Private Equity

Senior Data Scientist - Private Equity Consulting

Senior Data Scientist - Private Equity Consulting

My client is a successful multi-domain data consultancy business headquartered inEdinburghand operating with offices in bothLondonandBristol. The business is enjoying sustained growth.


Their practice brings together experts across key business sectors including Healthcare & Pharmaceuticals, Retail Banking, Energy, and Telecoms. Within these domains, the business partners with industry-leading blue-chip organisations while also remaining well connected to academia and retaining a focus on R&D. This is an incredibly stimulating environment.


The team are obsessive about delivering value for clients and working in a collaborative, engaged and creative way with colleagues and partner businesses.


This Data Scientist role is suited towards candidates with3-5 years of work experience who have technical skills in ML model development, advanced statistics and commercial acumen.


The Role:

  • As aSenior Data Scientist, you will be a technical specialist, developing and implement ML models that deliver tangible value to clients.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • Act as a thought leader, designing solutions from a theoretical standpoint through to practical execution.
  • The role can be remote within the UK.


The Profile:

  • Broad experience of using a range of predictive modelling and machine learning techniques to tackle business problems across commercial sectors.
  • Ability to translate complex analytical solutions into transparent and actionable business insight.
  • Strong stakeholder engagement skills.
  • Advanced knowledge of statistics and ML techniques (both supervised and unsupervised), knowledge of emerging technologies e.g. Reinforcement Learning is advantageous.
  • Advanced user of Python and/or R, with cloud analytics experience.


This is a fantastic opportunity for a passionate experienced data scientist with ambition to grow their career. To apply and grow their analytics skills in multi-disciplinary project teams and collaborate in a fast-growing data science community.


Visa sponsorship is not provided with this role.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.