Senior Data Scientist

Kleboe Jardine Ltd
Nottingham
2 days ago
Create job alert

My client is a successful multi-domain data consultancy business headquartered inEdinburghand operating with offices in bothLondonandBristol. The business is enjoying sustained growth.


Their practice brings together experts across key business sectors including Healthcare & Pharmaceuticals, Retail Banking, Energy, and Telecoms. Within these domains, the business partners with industry-leading blue-chip organisations while also remaining well connected to academia and retaining a focus on R&D. This is an incredibly stimulating environment.


The team are obsessive about delivering value for clients and working in a collaborative, engaged and creative way with colleagues and partner businesses.


This Data Scientist role is suited towards candidates with3-5 years of work experience who have technical skills in ML model development, advanced statistics and commercial acumen.


The Role:

  • As aSenior Data Scientist, you will be a technical specialist, developing and implement ML models that deliver tangible value to clients.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • You will engage with stakeholders to translate business requirements into analytical solutions using the most appropriate data science techniques.
  • Act as a thought leader, designing solutions from a theoretical standpoint through to practical execution.
  • The role can be remote within the UK.


The Profile:

  • Broad experience of using a range of predictive modelling and machine learning techniques to tackle business problems across commercial sectors.
  • Ability to translate complex analytical solutions into transparent and actionable business insight.
  • Strong stakeholder engagement skills.
  • Advanced knowledge of statistics and ML techniques (both supervised and unsupervised), knowledge of emerging technologies e.g. Reinforcement Learning is advantageous.
  • Advanced user of Python and/or R, with cloud analytics experience.


This is a fantastic opportunity for a passionate experienced data scientist with ambition to grow their career. To apply and grow their analytics skills in multi-disciplinary project teams and collaborate in a fast-growing data science community.


Visa sponsorship is not provided with this role.

Related Jobs

View all jobs

SENIOR DATA SCIENTIST - Computer Vision / Generative AI HYBRID

Senior Data Scientist/ Senior Risk Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Insurance

Senior Data Scientist - London

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.