Senior Data Scientist

Funding Circle UK
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

SENIOR DATA SCIENTIST - Computer Vision / Generative AI HYBRID

Senior Data Scientist (GenAI)

Senior Data Scientist (MLOps)

Principal/Senior Data Scientist

Senior Data Engineer

Senior Data Scientist

We are looking for a Senior Data Scientist to join the ML/AI team. Our ML/AI team within the Data Organisation is a dynamic group of data scientists and machine learning experts passionate about using data to drive innovation. As a Senior Data Scientist on this team, you'll be at the forefront of developing and deploying machine learning and GenAI algorithms models. You'll collaborate with colleagues across the organisation to identify opportunities for automation, improve decision-making, and optimise our products and processes. This is a challenging and rewarding role where you can make a significant contribution to our mission while continuously learning and expanding your skillset in a supportive and collaborative environment.

Please note, the minimum expectation for office attendance is two days per week in our central London office.

The role

  1. Develop and implement machine learning models using traditional ML and GenAI:Design, develop, and deploy robust machine learning models and algorithms to solve complex business problems, with a focus on enhancing various aspects of Funding Circle's operations and decision-making processes. Make use of Generative AI models and services when necessary.
  2. Analyse data to identify opportunities to improve Funding Circle’s products and processes:Work with analysts and product managers to analyse large quantities of data and identify opportunities to enhance decision making and increase automation.
  3. Communicate results and engage with stakeholders:Effectively communicate complex technical concepts and findings to both technical and non-technical stakeholders. Present insights and recommendations in a clear and concise manner to drive informed decision-making.
  4. Mentorship and knowledge sharing:Actively participate in knowledge sharing within the Machine Learning and AI team and the wider data team, providing mentorship to junior team members and contributing to a collaborative and learning-oriented environment.
  5. Continuous learning:Keep up-to-date with advancements in machine learning and artificial intelligence. Apply cutting-edge techniques and technologies to address business challenges and maintain a competitive edge in the financial technology sector.

What we're looking for

  1. Data curiosity and problem solving skills:The ability and willingness to explore, understand and explain complex datasets and identify opportunities for automation and process improvements. Strong analytical and problem-solving skills to address real-world business challenges.
  2. Proven machine learning expertise:Demonstrated experience in developing and deploying machine learning models, with a strong understanding of various algorithms, including supervised and unsupervised learning methods. Additional knowledge of GenAI and LLMs is an advantage.
  3. Software development skills:Strong programming experience, ideally in Python. Ability and willingness to work alongside machine learning engineers on the production implementation of algorithms and machine learning models.
  4. Data manipulation, analysis and feature processing:Proficient in data manipulation and analysis using tools like Pandas, Polars, NumPy, and SQL. Ability to work with large-scale datasets and extract meaningful insights.
  5. Collaborative team player:Strong interpersonal and communication skills and the ability to work collaboratively in cross-functional teams.
  6. Continuous learning and adaptability:Commitment to staying updated on the latest developments in data science and machine learning.

Why join us?

At Funding Circle, we celebrate and support the differences that make you, you. We’re proud to be an equal-opportunity workplace and affirmative-action employer. We truly believe that diversity makes us better.

As a flexible-first employer, we offer hybrid working at Funding Circle, and we've long believed in a 'best of both' approach to in-office collaboration and non-office days. We expect our teams to be in our London office three times a week, where you can take advantage of our newly refurbished hybrid working space.

We back our Circlers to build their own incredible career, making a difference to small businesses every day.

Ready to make a difference? We’d love to hear from you.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Data Science Edition

Data science has become essential for modern businesses, enabling data-driven decisions that enhance efficiency, profitability, and strategic foresight. From predictive analytics in finance to recommendation engines in retail, data scientists sit at the crossroads of statistics, programming, and domain expertise, building models that translate raw information into tangible insights. Yet, when broader economic forces create uncertainty—through market downturns, shifting investor priorities, or internal budget constraints—data science roles can experience increased scrutiny, competition, and extended hiring cycles. Despite these pressures, data-driven approaches remain crucial to organizations looking to weather challenges and find opportunities in volatile environments. Whether you’re refining advanced machine learning techniques, fine-tuning data pipelines, or collaborating with business stakeholders on dashboards, your skill set is often still in demand. The key is adapting your job search strategy and personal branding to cut through the noise when fewer roles may be available. This article explores: Why economic headwinds affect data science hiring. Actionable strategies to stand out in a tighter job market. Ways to emphasize your technical and soft skills effectively. Techniques to maintain focus and resilience despite potential setbacks. How www.datascience-jobs.co.uk can help you secure the ideal data science position. By combining strategic thinking, polished communications, and adaptability, you can land a fulfilling data science role that leverages your expertise—even if the market feels more demanding.

How to Achieve Work-Life Balance in Data Science Jobs: Realistic Strategies and Mental Health Tips

Data science has quickly emerged as one of the most influential fields in the modern workplace, shaping how businesses make critical decisions and expanding our understanding of everything from consumer behaviour to public health trends. As the global demand for data insights continues to rise, companies of all sizes are seeking professionals who can effectively harness analytics and machine learning to drive innovation. Yet, this promise of limitless opportunity comes with significant challenges. Data scientists often grapple with large volumes of complex data, tight project deadlines, cross-functional collaboration, and constant upskilling. Amid the excitement of discovering actionable insights and developing high-performing models, many wonder if it’s truly possible to maintain a healthy work-life balance. With the field evolving at breakneck speed, the intensity of these roles can leave even the most passionate data professionals drained and questioning how to protect their personal well-being. This article delves into the reality of high-intensity data science jobs, offering practical guidance on setting realistic expectations and preserving mental health. We’ll look at common pitfalls like burnout and perpetual “always learning” pressure, while also highlighting proven strategies for boundary-setting and effective time management. Whether you’re a seasoned data architect, an aspiring machine learning engineer, or somewhere in between, you’ll find actionable tips to help you manage your career trajectory without sacrificing your personal life.

From Research Labs to Real-World Insights: How Academic Researchers Can Thrive in Data Science

Over the past decade, the data science revolution has swept across industries—retailers predicting shopping habits, hospitals personalising patient treatments, and finance companies detecting fraud in near-real time. This surge in data-driven decision-making has created a pressing need for specialists capable of extracting meaningful insights from complex datasets. As a result, PhD holders and academic researchers are uniquely positioned to bring high-calibre analytical skills to the commercial realm. But transitioning from academia to data science can seem daunting: Where do you begin? How do you communicate your research background in industry-friendly terms? What new tools should you learn? This comprehensive guide, explores the paths, challenges, and strategies for academics making the leap into data science. You’ll discover how to leverage your scholarly expertise, adopt a commercial mindset, and build a career that transforms raw data into actionable insights—fostering innovations across every sector of the economy.