Senior Data Scientist

Funding Circle UK
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist – Machine Learning -  Defence –Eligible for SC

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist (Document Search)

Senior Data Scientist

Senior Data Scientist

We are looking for a Senior Data Scientist to join the ML/AI team. Our ML/AI team within the Data Organisation is a dynamic group of data scientists and machine learning experts passionate about using data to drive innovation. As a Senior Data Scientist on this team, you'll be at the forefront of developing and deploying machine learning and GenAI algorithms models. You'll collaborate with colleagues across the organisation to identify opportunities for automation, improve decision-making, and optimise our products and processes. This is a challenging and rewarding role where you can make a significant contribution to our mission while continuously learning and expanding your skillset in a supportive and collaborative environment.

Please note, the minimum expectation for office attendance is two days per week in our central London office.

The role

  1. Develop and implement machine learning models using traditional ML and GenAI:Design, develop, and deploy robust machine learning models and algorithms to solve complex business problems, with a focus on enhancing various aspects of Funding Circle's operations and decision-making processes. Make use of Generative AI models and services when necessary.
  2. Analyse data to identify opportunities to improve Funding Circle’s products and processes:Work with analysts and product managers to analyse large quantities of data and identify opportunities to enhance decision making and increase automation.
  3. Communicate results and engage with stakeholders:Effectively communicate complex technical concepts and findings to both technical and non-technical stakeholders. Present insights and recommendations in a clear and concise manner to drive informed decision-making.
  4. Mentorship and knowledge sharing:Actively participate in knowledge sharing within the Machine Learning and AI team and the wider data team, providing mentorship to junior team members and contributing to a collaborative and learning-oriented environment.
  5. Continuous learning:Keep up-to-date with advancements in machine learning and artificial intelligence. Apply cutting-edge techniques and technologies to address business challenges and maintain a competitive edge in the financial technology sector.

What we're looking for

  1. Data curiosity and problem solving skills:The ability and willingness to explore, understand and explain complex datasets and identify opportunities for automation and process improvements. Strong analytical and problem-solving skills to address real-world business challenges.
  2. Proven machine learning expertise:Demonstrated experience in developing and deploying machine learning models, with a strong understanding of various algorithms, including supervised and unsupervised learning methods. Additional knowledge of GenAI and LLMs is an advantage.
  3. Software development skills:Strong programming experience, ideally in Python. Ability and willingness to work alongside machine learning engineers on the production implementation of algorithms and machine learning models.
  4. Data manipulation, analysis and feature processing:Proficient in data manipulation and analysis using tools like Pandas, Polars, NumPy, and SQL. Ability to work with large-scale datasets and extract meaningful insights.
  5. Collaborative team player:Strong interpersonal and communication skills and the ability to work collaboratively in cross-functional teams.
  6. Continuous learning and adaptability:Commitment to staying updated on the latest developments in data science and machine learning.

Why join us?

At Funding Circle, we celebrate and support the differences that make you, you. We’re proud to be an equal-opportunity workplace and affirmative-action employer. We truly believe that diversity makes us better.

As a flexible-first employer, we offer hybrid working at Funding Circle, and we've long believed in a 'best of both' approach to in-office collaboration and non-office days. We expect our teams to be in our London office three times a week, where you can take advantage of our newly refurbished hybrid working space.

We back our Circlers to build their own incredible career, making a difference to small businesses every day.

Ready to make a difference? We’d love to hear from you.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.