Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist

NearTech Search
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

This range is provided by NearTech Search. Your actual pay will be based on your skills and experience — talk with your recruiter to learn more.

Base pay range

Salary between £75,000 - £90,000 DOE with yearly review (financial year)

Multilingual Senior Recruitment Consultant | Python, Backend Engineering, and Data Science

Senior Data Scientist – MLOps

My client works in the Insurance / Risk Management space and is relatively well established, having served their clients over the last 12 years. The firm was a relatively late adopter of AI, mostly due to some of the red tape and regulations affiliated with their more traditional sector. However, with a new CEO onboard and a more pragmatic approach, the firm is keen to play catch-up and help revolutionise their industry as others are doing.

To help accelerate this journey, they’ve invested heavily in the AI team and have now got some heavy-hitters in to lead on some cool, transformational projects. With a few MLEs already hired, they’re now looking for a senior MLOps individual to spearhead cloud deployment and management of some of the Key ML pipelines / infrastructure.

Day-to-Day Responsibilities:

  • Design, implement, and maintain robust MLOps pipelines to ensure seamless deployment, monitoring, and scaling of machine learning models in production.
  • Collaborate within the team to operationalise models, ensuring they are scalable, reliable, and efficient.
  • Develop and maintain CI/CD pipelines for ML workflows, integrating automated testing, model validation, and version control.
  • Monitor model performance in production, identifying and resolving issues such as data drift, model degradation, and latency bottlenecks.
  • Optimise cloud infrastructure for machine learning workloads, ensuring cost-efficiency and scalability.
  • Document processes, workflows, and best practices to ensure knowledge sharing and continuity within the team.

It goes without saying, but given the novelty of MLOps roles on the whole, the engineer should be keen on keeping up with best practices, attending workshops / events (on company time) and ensuring that they stay at the top of their game.

Technical Expertise:

  • Strong experience with cloud platforms such as AWS or Azure, including services like SageMaker, MLflow / Kubeflow.
  • Solid understanding of CI/CD tools (Jenkins, GitLab CI, GitHub Actions) and version control systems (aka Git).
  • Experience with IAC - Terraform or CloudFormation.

Nice to haves:

  • Familiarity with data engineering tools / frameworks (Apache Spark / Airflow) for pre-processing and managing large datasets.
  • Experience of working within the Insurance / Risk sector is really beneficial but not essential.
  • Good allowance for continued learning / development – bolstered by a £2,200 individual yearly learning fund.
  • Flexible working to suit care / caregiving needs.
  • Cycle to work schemes / season ticket initiatives.
  • 27 days of annual leave rising to 30 after 3 years of service.

Seniority level

Not Applicable

Employment type

Full-time

Job function

Business Development and Information Technology

Industries

Insurance


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.