Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

Qube Research & Technologies
City of London
2 weeks ago
Create job alert

Qube Research & Technologies (QRT) is a global quantitative and systematic investment manager, operating in all liquid asset classes across the world. We are a technology and data driven group implementing a scientific approach to investing. Combining data, research, technology and trading expertise has shaped QRT's collaborative mindset which enables us to solve the most complex challenges. QRT's culture of innovation continuously drives our ambition to deliver high quality returns for our investors.


Your future role within QRT

  • Building global and scalable Data Lakehouse solution used by multiple trading desks at QRT.
  • Contributing into software and infrastructure design and implementation in AWS cloud environment.
  • Developing data pipelines in Python using data libraries and cloud SDKs.
  • Data modelling within scope of Data Lake and OLAP - large volumes and highly concurrent data access.
  • Optimizing performance of the data lake as well as OLAP databases in cross-region environment.
  • Ensuring data completeness and quality across critical pipelines.
  • Build and support tailored data solutions for Quants and Traders.

Your present skillset

  • 5+ year of experience and proven track record of building data platforms.
  • Python and SQL mastery are essential. C++ is a big plus.
  • Appetite to contribute into cloud infrastructure.
  • Ability to build a structured approach to problem-solving.
  • Independent and autonomous while still a strong team player.
  • Intellectual curiosity to learn rapidly.
  • Finance experience is highly desirable.

QRT is an equal opportunity employer. We welcome diversity as essential to our success. QRT empowers employees to work openly and respectfully to achieve collective success. In addition to professional achievement, we are offering initiatives and programs to enable employees achieve a healthy work-life balance.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.