Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

South Bank
23 hours ago
Create job alert

Senior Data Engineer (Databricks)
Location: London (Hybrid)
Rate: Negotiable, depending on experience
Duration: 6 months (initial)

We’re looking for a Senior Data Engineer (Databricks) to join a world-leading energy organisation on a key transformation programme within their trading and supply division. This is an exciting opportunity to play a pivotal role in building modern, scalable data solutions using Azure cloud technologies.

The Role

As a Senior Data Engineer, you’ll be responsible for designing and developing robust data foundations and end-to-end solutions that drive value across the business. You’ll help shape and embed data-driven thinking across both technical and business teams, ensuring the organisation continues to lead with insight and innovation.

You’ll act as a subject matter expert, guiding technical decisions, mentoring junior engineers, and ensuring data engineering best practices are consistently applied.

Key Responsibilities
Design and build data solutions aligned with business and IT strategy.
Lead development of scalable data pipelines and models using Azure and Databricks.
Support data foundation initiatives and ensure effective rollout across business units.
Act as a bridge between technical and non-technical stakeholders, presenting insights clearly.
Oversee change management, incident management, and data quality improvement.
Contribute to best practice sharing and community-building initiatives within the data engineering space.Required Skills & Experience
Cloud Platforms: Strong expertise in AWS / Azure / SAP
ETL/ELT Pipelines: Advanced proficiency
Data Modelling: Expert level
Data Integration & Ingestion: Skilled
Databricks, SQL, Synapse, Data Factory and related Azure services
Version Control / DevOps tools: GITHUB, Azure DevOps, Actions
Testing & Automation tools: PyTest, SonarQubeDesirable Experience
Experience leading or running scrum teams
Exposure to planning tools such as BPC
Familiarity with external data ecosystems and documentation tools (e.g., MKDocs)The Project

You’ll be joining a large-scale programme focused on modernising a global data warehouse platform using Azure technologies. The project aims to deliver a unified and standardised view of data across international operations — a key enabler for smarter, data-driven trading decisions.

If you’re a data engineer with deep Azure and Databricks experience, and you enjoy solving complex challenges within a global business, this contract offers a chance to make a real impact on a high-profile initiative.

Interested? 

Please apply now with your updated CV and reach out to Tom Johnson at Certain Advantage - Ref: 79413

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Azure, BI & Data Strategy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.