Senior Data Engineer

Scott Logic
Newcastle upon Tyne
6 days ago
Create job alert

We work with some of the UK’s biggest companies and government departments to provide a pragmatic approach to technology, delivering bespoke software solutions and expert advice.


Our clients are increasingly looking to us to help them make the best use of their data. In building data platforms and pipelines, our data engineers create the foundation for diverse data & analytics solutions, including data science and AI. They build data lakes and warehouses, create the processes to extract or access operational data, and transform siloed datasets into integrated data models that allow insight into business performance and problems or training of ML models.


These are hands-on, client-facing roles, with openings at senior or lead level to suit your experience. You may be leading teams, setting technical direction, advising clients or solving tough engineering challenges. You’d also be expected to spend some time on-site with clients in the London area on an ad-hoc basis.


Our data engineers combine a strong software engineering approach with solid data fundamentals and experience with modern tools. We’re technology agnostic, and we’re open minded when it comes to your existing skillset.


What are we looking for?

  • Good experience with some of the technologies and approaches typical in modern data engineering and reporting. Including storage, data pipelines to ingest and transform data, and querying & reporting of analytical data.
  • You’ve worked with technologies such as Python, Spark, SQL, Pyspark, PowerBI etc.
  • You’ve got a background in software engineering, including Front End technologies like JavaScript.
  • You’re a problem-solver, pragmatically exploring options and finding effective solutions.
  • An understanding of how to design and build well-structured, maintainable systems.
  • Strong communication skills and a collaborative approach to work.
  • You embrace the chance to try new things, learn new skills and grow your experience.

It would be great if you have:

  • Experience of relevant cloud services within AWS, Azure or GCP.
  • Experience working in an Agile environment.
  • Experience working with common vendor products such as Snowflake or Data Bricks.
  • Experience working with CI/CD tooling.

What you’ll get in return is:

  • 25 days’ annual leave, rising to 30 days with each year of service.
  • Generous family leave policies.
  • Access to an employer pension scheme, private medical services and Group Life Assurance.
  • A range of optional benefits such as discounted gym membership and a cycle-to-work scheme.
  • A meaningful approach to evaluating your performance and providing feedback on your progress.

At Scott Logic, we value the flexibility of remote working alongside the value gained from spending time with our colleagues and clients. In our offices you’ll find employee-led clubs and events, as well as free games, books, and refreshments.


We have shared values that govern our behaviour toward others and the environment. We are proud to be B Corp, a global movement of businesses driving for a more inclusive, equitable, and regenerative economy. We believe diversity drives innovation, and embrace a culture where everyone can contribute, irrespective of race, religion, colour, national origin, gender, sexual orientation, age, marital status or disability.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.