Senior Data Engineer

Socium
Manchester
2 days ago
Create job alert
Overview

This is a proper Data Engineering role.


Not someone hiding behind pipelines.


Not a dashboard-only BI job.


You’ll sit inside a strong data team and make sure what gets built is actually usable for analytics, reporting and decision-making — while being a technical sounding board for the analytics team.


What you’ll actually be doing

  • Building and maintaining Azure data pipelines that are built properly, not rushed
  • Working hands-on with Azure Data Factory (ADF) for ingestion and orchestration
  • Structuring data so it works for analytics and reporting, not just storage
  • Partnering with Data Analysts to make sure they have the right data, models and structure to do their job properly
  • Helping shape how reporting datasets and semantic layers are designed
  • Supporting the analytics team from a data engineering perspective — improving how data is used, not just delivered
  • Translating business questions into solid data solutions
  • Working with engineers and analytics users to make sure reporting is built on good foundations
  • Sense-checking data models feeding into Power BI

The kind of background that fits

  • Solid experience as a Data Engineer in a modern environment
  • Hands-on with Azure in a data context
  • Strong working knowledge of ADF
  • Experience shaping data for analytics use cases
  • Experience working closely with Analysts or BI teams
  • Exposure to Power BI and understanding how data should be structured for reporting
  • Comfortable guiding less technical users on how data should be used
  • You think about outcomes, not just moving data from A to B

Why this role?

  • SaaS business where data genuinely drives decisions
  • Strong senior engineers already in place
  • You’ll have influence on both engineering and analytics
  • You’re not managing people, but your judgement will shape how data is used
  • Real impact on product, commercial and operational insight


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer (AWS, Airflow, Python)

Senior Data Engineer - Anti-Piracy

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.