Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Senior Data Engineer

VONQ
Greater London
2 days ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Company Information

All the health information we need is within us. Just below the skin. SAVA is redefining the way people interact with their health by developing the most advanced biosensing technology science has to offer, capable of accessing bodily information in a painless, real-time and affordable way.

Description

Join Sava’s Data Engineering team at a pivotal stage of growth, contributing to the development and scaling of both, internal and customer-facing data infrastructures. As a Data Engineer II, you will help implement reliable data pipelines, storage solutions, and reporting systems that power analytical and operational workflows across the company. This is a unique opportunity to work in a multidisciplinary environment, collaborating with a top-tier team in engineering, science, and product to shape the foundation of Sava’s data architecture.

Responsibilities

  • Build and maintain scalable, reliable data pipelines, ensuring efficient and accurate data ingestion, transformation, and delivery.
  • Design, implement, and optimize data storage solutions using modern databases and cloud-native tools.
  • Develop and maintain reporting systems and dashboards to support data-driven decision-making.
  • Collaborate with backend and infrastructure teams to integrate data services with applications and customer-facing tools.
  • Implement automated testing and validation processes for data workflows and pipelines.


Past Experience

  • 5+ years of experience in data engineering.
  • Proficiency in Python.
  • Strong SQL skills and experience with both relational and non-relational databases (e.g., SQL, MongoDB).
  • Familiarity with data visualization or reporting tools (e.g., Looker, Power BI, or similar).
  • Familiarity with containerization and CI/CD tools (e.g., Docker, GitHub Actions).
  • Knowledge of networking and cloud infrastructure (e.g., AWS, Azure).
  • Experience with modern data processing frameworks (e.g., dbt, Apache Airflow, Spark, or similar).


Requirements

  • A strong focus on system observability and data quality.
  • Emphasis on rapid scalability of solutions (consider market ramp up when entering a new market)
  • Relentless pursuit of system security.
  • Adaptable mindset — open to using different tools and approaches depending on project needs.
  • Ability to work & communicate across disciplines. Ability to translate concepts using analogies where possible. Disciplines you’ll be working closely with include Data Science, Mobile Engineering, Embedded Software through to other fringe disciplines like Manufacturing, Electronics, Sensor Development, and Mechanical Engineering.


Preferred

  • Exposure to regulated environments (e.g., healthcare, finance) or compliance frameworks (e.g., HIPAA, SOC2, ISO 27001).
  • Experience working with data residency constraints and multi-region architectures.
  • Understanding of secure data handling practices and basic vulnerability concepts.
  • Familiarity with model-based design approaches, including ER diagrams or data modeling tools.


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Data Science Jobs: The Best Months to Apply & Why

The UK's data science sector has matured into one of Europe's most intellectually rewarding and financially attractive technology markets, with roles spanning from junior data analysts to principal data scientists and heads of artificial intelligence. With data science positions commanding salaries from £30,000 for graduate data analysts to £140,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this intellectually stimulating and rapidly evolving field. Unlike traditional analytical roles, data science hiring follows distinct patterns influenced by business intelligence cycles, research funding schedules, and machine learning project timelines. The sector's unique combination of mathematical rigour, business impact requirements, and cutting-edge technology adoption creates predictable hiring windows that strategic professionals can leverage to advance their careers in extracting insights from tomorrow's data. This comprehensive guide explores the optimal timing for data science job applications in the UK, examining how enterprise analytics strategies, academic research cycles, and artificial intelligence initiatives influence recruitment patterns, and why strategic timing can determine whether you join a pioneering AI research team or miss the opportunity to develop the next generation of intelligent systems.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.

Why Now Is the Perfect Time to Launch Your Career in Data Science: The UK's Analytics Revolution

The United Kingdom stands at the forefront of a data science revolution that's reshaping how businesses make decisions, governments craft policies, and society tackles its greatest challenges. From the machine learning algorithms powering London's fintech innovation to the predictive models guiding Manchester's smart city initiatives, Britain's transformation into a data-driven economy has created an unprecedented demand for skilled data scientists that far outstrips the available talent. If you've been contemplating a career transition or seeking to position yourself at the cutting edge of the digital economy, data science represents one of the most intellectually stimulating, financially rewarding, and socially impactful career paths available today. The convergence of big data maturation, artificial intelligence mainstream adoption, business intelligence evolution, and cross-industry digital transformation has created the perfect conditions for data science career success.