Senior Data Engineer

Immersum
City of London
1 day ago
Create job alert

Senior Data Engineer - Financial services

Location: London - 2x per month

Salary range: £75,000-£85,000 + 10% bonus + benefits

Purpose: Build and maintain large, scalable Data Lakes, processes and pipelines

Tech: Python, PySpark, AWS, Iceberg/ Kafka, Spark/Glue, CI/CD

Industry: Financial services / securities trading


Immersum continue to support a leading SaaS securities trading platform, who are hiring a Data Engineer to join a wider tech team of 25. You will be working on a blend of new and existing projects working with the latest tech in a greenfield large, highly scalable data lake environment.


The Company:


For the past 20+ years they have been a leading SaaS platform providing a full product suite of services to the securities trading sector. They serve in excess of 150 financial institutions and support the majority of major global banks. As they continue to grow their services to their customers they have an exciting opportunity for their Data Engineer to join the company to help grow and shape this function in the long term.


The Role:

The successful candidate will work across these areas:

  1. Owning the build and maintenance of their Lake house and being the 'go-to' Data person in the business.
  2. Working with stakeholders from across the business showing the possibilities that Data provides.
  3. Build and manage new and existing pipelines as new products and functions become available on the platform
  4. Be comfortable or show an interest to learn CI/CD, IaC and Infra tooling using Terraform, Ansible and Jenkins whilst automating everything with Python


Tech (experience in any listed is advantageous)

  • Python
  • Cloud: AWS
  • Lake house: Apache Spark or AWS Glue
  • Cloud Native storage: Iceberg, RDS, RedShift, Kafka
  • IaC: Terraform, Ansible
  • CI/CD: Jenkins, Gitlab
  • Other platforms such as Databricks or Snowflake will be considered


You will have a fantastic opportunity to lead the Data Engineering division whether you decide to take your career path in leadership or IC, both routes are equally valuable for this role.


You will be joining at a time when Data is in its infancy and helping to scale and growth the Data platform and processes to better serve the business. You will be working with stakeholders across the business who are experts in their fields and you will be supporting them as the Data expert.


If this looks of interest please click apply to find out more!


At this time sponsorship is not on offer.

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.