Senior Data Analyst (Python - Snowflake)

Contingent Workforce Solutions
London
6 days ago
Create job alert

AMS is a global workforce solutions partner committed to creating inclusive, dynamic, and future-ready workplaces. We help organisations adapt, grow, and thrive in an ever-evolving world by building, shaping, and optimising diverse talent strategies.

Our Contingent Workforce Solutions (CWS) is one of our service offerings. Acting as an extension of their recruitment teams, we connect them with skilled interim and temporary professionals, fostering workplaces where everyone can contribute and succeed.

Our client, a major UK retail bank, provides every day banking services to over 17 million retail customers. The banks expertise and services span across Business Services, Corporate banking, Wealth Management, Group Functions, Retail and Investment Banking.

On behalf of this organisation, AMS are looking for a Senior Data Analyst (Python - Snowflake) for a 6 Months contract based in London (Hybrid - 2 times per week in the office)

Purpose of the role:

We are looking for an experienced Senior Data Analyst to join our Client's Balance Sheet Management team. This role is critical in delivering enhanced, granular insights into customer behavior through enriched, application-level data. You will extract and transform data into actionable insights that support decision-making and operational improvements.

What you'll do:

  • Develop and maintain a single source of enriched application-level data to be used across Finance, Treasury, Pricing function.
  • Design and implement robust data pipelines leveraging existing data feeds from Pricing, Finance, and the PI CoE.
  • Translate complex business requirements into scalable and maintainable code using Python, PySpark, and CI/CD best practices.
  • Provide actionable insights into customer behaviours including Hopping, drawdown patterns, speed to Drawdown.
  • Enable strategic and operational decision-making through accurate, timely, and behavioural insights.
  • Work closely with stakeholders to inform business responses to emerging customer trends.

The skills you'll need:

  • Proven experience as a Data Analyst or Data Engineer within the banking or financial services sector.
  • Strong programming skills in Python, Snowflake and PySpark with experience in building reusable analytics libraries.
  • Hands-on experience working in big data environments and on application-level datasets.
  • Solid understanding of CI/CD processes, version control (e.g., Git), and deployment pipelines.
  • Experience with interest rate risk management and understanding of treasury/ALM functions.

Next steps

This client will only accept workers operating via an Umbrella or PAYE engagement model.

If you are interested in applying for this position and meet the criteria outlined above, please click the link to apply and we will contact you with an update in due course.

AMS, a Recruitment Process Outsourcing Company, may in the delivery of some of its services be deemed to operate as an Employment Agency or an Employment Business


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.