Quantitative Researcher (ML)

DARE
London
1 week ago
Create job alert
Overview

City of London

Permanent, Full-time - Onsite

Who we are:

We are an energy trading company generating liquidity across global commodities markets. We combine deep trading expertise with proprietary technology and the power of data science to be the best-in-class. Our understanding of volatile, data-intensive markets is a key part of our edge.

At Dare, you will be joining a team of ambitious individuals who challenge themselves and each other. We have a culture of empowering exceptional people to become the best version of themselves.

What you’ll be doing

The Quantitative Researcheris a key role within the algorithmic technical space at Dare. Working closely with a talented algorithmic andtechnical team to build a platform that delivers ML capabilities to ourLiquidity trading teams. These teams are responsible for delivering products for internal customers. Setting and delivering a consistent, scalable approach to machine learning across the organisation is one of the key success criteria for this role. The role requires building relationships and collaborating with Senior Leaders across the business to shape a strategy that delivers models that provide our traders with a competitive edge.

  • Using Dare’s proprietary trading data and models to drive trading PNL.
  • Developing trading indicators and strategies powered by machine learning.
  • Partnering with quantitative research and algorithmic trading technology teams.
  • Collaborating with the CEO and other senior stakeholders to combine domain knowledge with engineering expertise.
What you’ll bring
  • 3+ years experience in machine learning algorithms, software engineering, and data mining models, withlarge language modelling (LLM) experience being advantageous.
  • A background in maths, statistics, and algorithms, with the capability to write robust scalable Python code.
  • A strong understanding of the mathematical and statistical fundamentals on which the ML methods are based. We want someone who understands the methods rather than just calling functions from existing ML packages.
  • Experience with production data processing. That includes data manipulation, data cleansing, aggregation, efficient (pre-)processing, etc.
  • Experience with time-series data, including storage and management.
  • A strong understanding through the usage of machine learning frameworks (TenserFlow, PyTorch, sci-kit-learn, Huggingface).
  • Ability to work with analytical teams to build dashboards that prove the value of the machine learning capabilities as we deliver models to our production environments.
Desirable
  • Experience working with real-time data systems.
  • Experience working with cloud-based solutions.
Benefits & perks
  • Competitive salary
  • Vitality health insurance and dental cover
  • 38 days of holiday (including bank holidays)
  • Pension scheme
  • Annual Bluecrest health checks
  • A personal learning & development budget of £5000
  • Free gym membership
  • Specsavers vouchers
  • Enhanced family leave
  • Cycle to Work scheme
  • Credited Deliveroo dinner account
  • Office massage therapy
  • Freshly served office breakfast twice a week
  • Fully stocked fridge and pantry
  • Social events and a games room
Diversity matters

We believe in a workplace where our people can fulfill their potential, whatever their background or whomever they are. We celebrate the breadth of experience and see this as critical to problem-solving and to Dare thriving as a business. Our culture rewards curiosity and drive, so the best ideas triumph and everyone here can make an impact.

Please let us know ahead of the interview and testing processes if you require any reasonable adjustments or assistance during the application process.

We’re also proud to be certified a ‘Great Place to Work’. Read more about our culture and what our team says about us here.


#J-18808-Ljbffr

Related Jobs

View all jobs

Quantitative Researcher

Quantitative Researcher - Systematic Equities

Quantitative Researcher - Systematic Equities

Quantitative Researcher...

Quantitative Researcher

Quantitative Researcher

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.