Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Quantitative Portfolio Manager

Anson Mccade
London
4 days ago
Create job alert

Quantitative Portfolio Manager
£150,000-250,000 GBP
Formulaic Bonus
Onsite WORKING
Location: Central London, Greater London - United Kingdom Type: Permanent

Anson McCade have partnered with an established Multi-Strategy Hedge Fund which is seeking Portfolio Managers to set up new trading teams or trade their own strategies independently. This firm has an extensive profitable track record, outperforming their peers, and is looking to continue this by setting up pods where Quant PMs will earn a % payout of their PnL.

In this role, you will be responsible for the full research and trading pipeline of your own systematic strategies, covering intraday or mid frequency time horizons (Minutes-a week), across US equities, global futures, or single stock options/vol markets. In addition to managing your own strategies, you will be able to build a team and utilise the expertise of the top C++/Python Developers at the firm.

The Role: Research, development and trading of intraday or mid frequency cash equities, futures or options strategies.
Developing and optimising infrastructure and tools on an ad hoc basis.
Hiring and leading junior members of the team and leveraging the support of the CIO to improve performance and deal with challenges.
Requirements: At least 5 years of experience in front office quant research in equities/ futures markets.
Proficiency in Python is required, C++ experience is desired, skills in R, Matlab, and SQL are also a plus.
A Bachelor's and Master's degree from a top University, PhDs are preferred but not required.
Reference: AMC/GHA/BFMPM/NP01

#geha
TPBN1_UKTJ

Related Jobs

View all jobs

Quantitative Portfolio Manager

Quantitative Developer

Quantitative Developer

Quantitative Trader - Execution Services.

Quantitative Analyst - Macro & Commodities Investment Teams (Summer Internship)

Quantitative Researcher – Credit

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly become one of the most influential disciplines of the digital age. Once a niche combination of statistics and computing, it is now central to how organisations innovate, compete, and grow. From healthcare and finance to retail, logistics, and government, data science is reshaping decision-making across every sector. In the UK, data science has grown into a core career pathway. Salaries are competitive, demand continues to rise, and roles now extend far beyond analytics into artificial intelligence, machine learning, and predictive modelling. Yet as technologies evolve, many of the most important data science careers of the future don’t exist today. This article explores why entirely new roles will emerge, the kinds of careers that may appear, how existing jobs will evolve, why the UK is well placed to lead, and what professionals can do to prepare for this transformation.

Seasonal Hiring Peaks for Data Science Jobs: The Best Months to Apply & Why

The UK's data science sector has matured into one of Europe's most intellectually rewarding and financially attractive technology markets, with roles spanning from junior data analysts to principal data scientists and heads of artificial intelligence. With data science positions commanding salaries from £30,000 for graduate data analysts to £140,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this intellectually stimulating and rapidly evolving field. Unlike traditional analytical roles, data science hiring follows distinct patterns influenced by business intelligence cycles, research funding schedules, and machine learning project timelines. The sector's unique combination of mathematical rigour, business impact requirements, and cutting-edge technology adoption creates predictable hiring windows that strategic professionals can leverage to advance their careers in extracting insights from tomorrow's data. This comprehensive guide explores the optimal timing for data science job applications in the UK, examining how enterprise analytics strategies, academic research cycles, and artificial intelligence initiatives influence recruitment patterns, and why strategic timing can determine whether you join a pioneering AI research team or miss the opportunity to develop the next generation of intelligent systems.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.