QC Specialist Data Analytics

Dublin
1 week ago
Create job alert

QC Specialist Data Analytics

Team Horizon is seeking a QC Specialist Data Analytics for our client based in Dublin who will have a key role in Quality Transformation and the QC Optimization Initiative. The role will be responsible for applying advanced data analytics to extract actionable insights, optimize QC workflows, and drive digital transformation in quality operations.

If you are passionate about Quality Control, laboratory analytics, and data science, and want to drive the next evolution of QC digital optimization, we encourage you to apply!

Why you should apply:

  • This is an excellent opportunity to join a world class manufacturing operation, with an outstanding track record of reliably delivering high-quality medicines to patients around the world suffering serious illnesses.

  • There is a strong culture of continuous improvement and innovation within the company to strive for solutions that improve health outcomes and dramatically improve people’s lives.

  • Our client is developing the capability to produce all its medicines in Dublin, helping to ensure continuity of supply of our medicines as they expand internationally.

    What you will be doing:

  • Analyze and interpret complex QC data from laboratory instruments, manufacturing
    processes, and digital QC systems to improve decision-making and process efficiency.

  • Collaborate with QC analysts to design and implement data-driven solutions for quality improvement and regulatory compliance.

  • Assist in developing business cases and strategic recommendations for digital solution
    Developments.

  • Support the definition and advancement of a self-service reporting model. Automate QC reporting and visualization using tools such as Spotfire, Power BI, Tableau to provide real-time insights.

  • Ensure data integrity and traceability by working with structured and unstructured QC datasets from multiple laboratory sources, including LIMS, LMES, and real-time monitoring systems.

  • Optimize laboratory workflows by integrating digital tools, AI-driven analytics, and automation to enhance data collection and reporting efficiency.

  • Partner with business stakeholders to share data best practices, identify and drive business process data standardization initiatives.

  • Provide support in developing executive communications and present analysis and insights to senior leadership.

  • Support analytical reports maintenance and validation. Work closely with IT, data engineering, and digital transformation teams to enhance QC dat management and accessibility.

  • Drive innovation in digital QC strategies, leveraging big data analytics for enhanced quality monitoring and predictive quality insights.

    What you need to apply:

  • Doctorate degree and 2 years of Project Management, Quality and/or Operations experience OR Master’s degree and 6 years of Project Management, Quality and/or Operations experience OR Bachelor’s degree and 8 years of Project Management, Quality and/or Operations experience.

  • Preferred to have a Bachelor’s or Master’s degree in a relevant field such as Data Science, Chemistry, Biochemistry, Pharmaceutical Sciences, Engineering, or a related discipline.

  • 5+ years of experience in Quality Control (QC) or Manufacturing setting, with a strong focus on QC data analysis and digital optimization.

  • Deep knowledge of laboratory operations, analytical testing, quality control workflows, and regulatory requirements (e.g., GMP, GLP, FDA, ISO standards).

  • Proficiency in programming languages with emphasis on SQL, Python and R.

  • Experience with data visualization tools or packages, such as Spotfire, Power BI or Tableau.

  • Experience with LIMS, MES, ELN, and other digital QC systems to extract, analyze, and interpret complex datasets.

  • Strong background in statistical data analysis, process monitoring, and root cause investigations in QC environments.

  • Experience with advanced statistical/analytical techniques and machine learning algorithms (structured and unstructured data)

  • Experience with Databricks platform for data analytics and MLOps

  • Experience working with big data platforms, cloud-based analytics (AWS, Azure, GCP), and automation tools for QC data integration.

  • Ability to translate complex QC datasets into actionable insights to enhance laboratory efficiency, compliance, and decision-making.

  • Experience in pharmaceutical, biotech, medical device, or highly regulated industries where QC compliance is critical.

  • Expertise in data governance, audit trail management, and data security best practices in a QC setting. Expertise in QC technology and digital transformation

Related Jobs

View all jobs

Pharmaceutical Quality Control - Shift Analyst

QA Manager

Senior Quality Control Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Shadowing and Mentorship in Data Science: Gaining Experience Before Your First Full-Time Role

How to Find Mentors, Build Industry Connections, and Hone the Skills Needed in a Fast-Evolving Field Introduction Over the past decade, data science has grown from a niche academic discipline to a pivotal function driving decision-making in businesses of all sizes. With an array of applications—from predictive analytics and natural language processing to recommender systems and computer vision—data science offers an enticing career path for analytically minded professionals. However, as the field expands, so too does the level of competition. Employers seek not just theoretical knowledge but also real-world experience and robust problem-solving skills. That’s where shadowing and mentorship become game-changers for early-career data scientists. These hands-on learning opportunities provide an unmatched window into the workflows, tools, and soft skills you’ll need to excel in a professional environment. Whether you’re still completing your studies, fresh out of a bootcamp, or transitioning from another career, working closely with experienced data scientists can significantly shorten your learning curve and help you stand out when applying for your first full-time position. This article explores how to find mentors who align with your goals, the best ways to engage in shadowing opportunities, and practical tips for showcasing your growth as a mentee. From clarifying the nature of data science roles to leveraging online networks, you’ll discover how to position yourself as a candidate poised to solve complex challenges and drive data-driven innovation.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.