Product Owner - FMGC Data SAAS

Bristol
4 days ago
Create job alert

Product Owner

Main Objectives:

  1. Define and deliver a product roadmap for existing products that aligns with customer/industry need, and set the direction for new product development

  2. Manage the product development relationship with existing technical and data partners (Retail Insight, In Touch, Retail Spotlight), or any new partners, ensuring effective and efficient delivery of service

    Skillset Required

    In this role the individual must be capable of, and be able to demonstrate experience of:

    • Product leadership – Be able to lead product strategy and development, spanning between technical partners and clients

    • Relationship Management - Building relationships and engagement with all levels of stakeholders up to board level, internally and with technical partners

    • Customer Management – Working with product operations and customer contacts to ensure they’re getting value, gather their needs, and translate those into product requirements

    • Communication – Be able to clearly articulate and communicate with customer, partner, and internal stakeholders

    • Technical product development – Have a good working understanding of product development and leading-edge technology. Proficiency in Agile methodologies and principles.

    Responsibilities

    • Define and communicate the product vision, strategy, and roadmap for EPOS analytics SaaS platforms, with a focus on integrating AI, machine learning, and image recognition technologies.

    • Collaborate with stakeholders, including retail FMCG clients, to gather and prioritize product requirements.

    • Develop and maintain a detailed product backlog, ensuring alignment with business goals and customer needs.

    • Work closely with cross-functional teams, including development, data science, and design, to deliver high-quality, innovative products on time.

    • Conduct market research and competitive analysis to inform product decisions and identify opportunities for innovation.

    • Act as the primary point of contact for all product-related inquiries and decisions.

    • Facilitate Agile ceremonies such as sprint planning, reviews, and retrospectives.

    • Monitor product performance, analyse user feedback, and drive continuous improvement initiatives.

    • Ensure compliance with industry standards and regulations relevant to the retail FMCG sector.

    Experience Required

    To be successful in this role, the individual must have experience:

    • Proven experience in product owner or similar role, preferably in the field of EPOS analytics SaaS platforms.

    • Experience within the FMCG sector, ideally with an FMCG brand, and have a working knowledge of the UK Grocery and Convenience sectors.

    • Experience working and collaborating with external development partners.

    • Extensive experience in the management of product backlogs, through to tracking releases.

    • Experience with product management tools (e.g., JIRA, Trello).

    • Experience in integrating AI, machine learning, and image recognition into product development.

    • Bachelor’s degree in Business, Computer Science, or a related field preferable

Related Jobs

View all jobs

Product Owner - FMGC Data SAAS

Product Owner - FMGC Data SAAS

Product Manager

Technical Project Manager

Senior Data Developer

Customer Data Analytics Lead

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.