Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Data Engineer

Mimecast Limited
London
4 days ago
Create job alert

The driving force behind our Machine Learning and Data Science infrastructure at Mimecast

Embrace the incredible opportunities that lie within Mimecast, where innovation and impact converge. The cybersecurity industry is experiencing exponential growth, and by joining us, you'll be at the forefront of this ever-evolving landscape. The field is rapidly changing, as threat actors employ AI to scale up phishing and social engineering operations.

Why Join Our Team?

“You'll have the chance to build large-scale data pipelines moving billions of data points daily in real-time, and develop, deploy and utilise cutting-edge ML models, empowering you to thwart those cyber villains and safeguard businesses and individuals alike. As a company that is well-established and committed to growth, we are actively expanding our ML team with a Principal Data Engineer – Machine Learning role which is amongst the most senior roles in the team, directly reporting to the Director of Data Science. Join us on this exhilarating journey, where you'll shape the future of cybersecurity by developing large-scale data products for ML models that push the boundaries of innovation and make an indelible impact in protecting our digital world.” – Hiring Manager

Responsibilities

  • Design and lead the implementation of real-time data pipelines which transport billions of data points per day, with strong traffic variations around peak hours
  • Design and deploy state-of-the-art ML (predominantly NLP and voice recognition) models that are optimised for both accuracy and throughput
  • Transform prototypes into production-ready data and ML applications that meet throughput and latency requirements
  • Deploy and manage data and ML infrastructure necessary for productionising code (Kafka, Docker, Terraform, etc)
  • Build efficient data pipelines between on-premise and cloud environments to handle text and audio data processing loads for ML models
  • Deploy NLP models in cloud environments (AWS SageMaker) through Jenkins
  • Design and implement MLflow and other ML Ops applications to streamline ML workflows which adhere to strict data privacy and residency guidelines
  • Communicate your work throughout the team and related departments
  • Mentor and guide junior members of the team, establish and champion best practices and introduce fresh ideas and concepts

Experience

  • 10+ years of experience working on data processing and engineering for ML models, with 6+ years developing large-scale data and ML systems twhich receive billions of requests per day
  • Expert level know-how of designing and implemention synchronous, asynchronous and batch data processing operations
  • Expert level programming skills in Python, along with experience in using relevant tools and frameworks such as PyTorch, FastAPI and Huggingface; strong programming skills in Java are a plus
  • Expert level know-how of ML Ops systems, data pipeline design and implementation, and working with ML platforms (preferably AWS SageMaker)
  • Strong analytical and problem-solving abilities, with a keen eye for detail and accuracy
  • Curiosity and a strong growth mindset with a demonstrable history of learning quickly in a loosely structured, rapidly changing environment
  • Excellent collaboration and communication skills
  • At least a bachelor's degree in computer science or other relevant fields

What We Bring

Join our Machine Learning and Data Science team to accelerate your career journey, working with cutting-edge technologies and contributing to projects that have real customer impact. You will be immersed in a dynamic environment that recognizes and celebrates your achievements.

Mimecast offers formal and on the job learning opportunities, maintains a comprehensive benefits package that helps our employees and their family members to sustain a healthy lifestyle, and importantly - working in cross functional teams to build your knowledge!

Our Hybrid Model: We provide you with the flexibility to live balanced, healthy lives through our hybrid working model that champions both collaborative teamwork and individual flexibility. Employees are expected to come to the office at least two days per week, because working together in person:

  • Fosters a culture of collaboration, communication, performance and learning
  • Drives innovation and creativity within and between teams
  • Introduces employees to priorities outside of their immediate realm
  • Ensures important interpersonal relationships and connections with one another and our community!

#LI-GC1

DEI Statement

Cybersecurity is a community effort. That’s why we’re committed to building an inclusive, diverse community that celebrates and welcomes everyone – unless they’re a cybercriminal, of course.

We’re proud to be an Equal Opportunity and Affirmative Action Employer, and we’d encourage you to join us whatever your background. We particularly welcome applicants from traditionally underrepresented groups.

We consider everyone equally: your race, age, religion, sexual orientation, gender identity, ability, marital status, nationality, or any other protected characteristic won’t affect your application.

Due to certain obligations to our customers, an offer of employment will be subject to your successful completion of applicable background checks, conducted in accordance with local law.

About Us

We save companies the embarrassment of awkward data slip ups by disrupting cybercriminal activity. We think fast, go big and always demand more. We work hard, deliver – and repeat. We grow with meaningful determination. And put success well within our reach. We empower each other, live by our values, and always deliver on our purpose. We push each other to be better and expect to be pushed back. This is a community of respect. Where everyone is counted.


#J-18808-Ljbffr

Related Jobs

View all jobs

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Principal Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.