MLOps Engineer

Methods Business and Digital Technology
Worcester
1 month ago
Create job alert

Methods Analytics is looking for a MLOps Engineer preferably has worked in the defence sector.

Location:

4-5days/w onsite at one of the follow locations: Worcester/Great Malvern/Gloucester/Poole or London

Salary:

£55,000 to £60,000 + bonus+ benefits

Who we are:

Methods Analytics exists to improve society by helping people make better decisions with data. Combining passionate people, sector-specific insight and technical excellence to provide our customers an end-to-end data service. We use a collaborative, creative and user centric approach data to do good and solve difficult problems. We ensure that our outputs are transparent, robust and transformative.

We value discussion and debate as part of our approach. We will question assumptions, ambition and process – but do so with respect and humility. We relish difficult problems, and overcome them with innovation, creativity and technical freedom to help us design optimum solutions. Ethics, privacy and quality are at the heart of our work and we will not sacrifice these for outcomes. We treat data with respect and use it only for the right purpose. Our people are positive, dedicated and relentless. Data is a vast topic, but we strive for interactions that are engaging, informative and fun in equal measure.

Methods Analytics was acquired by the Alten Group in early 2022.

Requirements

What You'll Be Doing as an MLOps Engineer:

  • Collaborate with Cross-Functional Teams: Work closely with data scientists, engineers, architects, and other stakeholders to align MLOps solutions with business objectives, explaining complex technical concepts in accessible language for non-technical audiences.
  • Automate Workflows and Ensure Reproducibility: Write scripts to automate ML workflows and ensure reproducibility of machine learning experiments, enabling consistent and efficient results.
  • Set Up ML Environments and Deployment Tools: Configure and maintain ML deployment environments using platforms and tools such as Kubernetes, Docker, and cloud platforms (e.g., AWS, Azure), ensuring scalability and reliability.
  • Develop CI/CD Pipelines: Build and maintain CI/CD pipelines to streamline model deployment and ensure automated, secure, and reliable model lifecycles from development to production.
  • Monitor and Maintain Deployed Models: Conduct regular performance reviews and data audits of deployed models, tracking model drift and identifying opportunities for optimisation to enhance performance and reliability.
  • Security and Vulnerability Management: Participate in threat modelling to identify and assess potential security risks throughout the ML lifecycle. Implement and maintain vulnerability management practices to proactively address security risks, ensuring the integrity and resilience of deployed models and infrastructure.
  • Troubleshoot and Resolve Issues: Proactively troubleshoot issues related to model performance, data pipelines, and infrastructure, identifying and resolving root causes to maintain stability
  • Champion Best Practices and Compliance: Ensure solutions follow best practices in security, scalability, and compliance, particularly aligning with Secure by Design and high-assurance software requirements.
  • Identify and Implement Reusable Solutions: Focus on reusability to maximise development efficiencies, reducing costs across programmes by identifying commonalities and building scalable solutions.
  • Collaborate on Data Architecture: Work with data architects to ensure the MLOps pipeline integrates seamlessly within the broader data architecture, aligning with governance and compliance standards.

 

Requirements:

You Will Demonstrate:

  • Technical Proficiency in Python and ML Frameworks: Experience with Python and ML frameworks like TensorFlow, PyTorch, or Scikit-Learn, enabling efficient deployment and management of ML models.
  • Containerisation and Orchestration: Hands-on experience with containerisation and orchestration tools, such as Docker and Kubernetes, to ensure reliable, scalable model deployments.
  • CI/CD Expertise: Proven experience developing and managing CI/CD pipelines using tools like Jenkins, Git, and Terraform, streamlining deployment and automating testing.
  • Knowledge of Cloud and ML Infrastructure: Experience with cloud platforms (AWS, Azure, or GCP), infrastructure-as-code (IaC) practices, and managing cloud-based ML workflows and resources at scale.
  • Experience with Threat Modelling and Vulnerability Management: Proven ability to conduct threat modelling exercises to identify security risks and implement vulnerability management practices to ensure robust and secure machine learning systems.
  • Experience in Security and Compliance: Demonstrated experience working within secure, high-assurance environments, ideally including defence or similarly regulated settings.
  • Cross-Functional Collaboration Skills: Ability to collaborate across teams to translate business requirements into technical specifications, maintaining clear and effective communication.
  • Strong Troubleshooting Abilities: Proficient in diagnosing and resolving model and infrastructure-related issues, identifying root causes, and implementing corrective actions.

 You may also have some of the desirable skills and experience:

  • Experience with MLOps Tools and Version Control: Familiarity with tools such as MLflow, DVC, Seldon Core, Metaflow, and Airflow or Prefect, and version control practices for models and datasets to ensure reproducibility, traceability, and compliance across ML workflows.
  • Scalability and Optimisation in Production Environments: Experience managing high-performance, low-latency data systems and optimising ML model infrastructure to handle large-scale data in production.
  • Understanding of Agile Development Methodologies: Familiarity with iterative and agile development methodologies such as SCRUM, contributing to a flexible and responsive development environment.
  • Familiarity with Recent Innovations: Knowledge of recent innovations such as GenAI, RAG, and Microsoft Copilot, as well as certifications with leading cloud providers and in areas of data science, AI, and ML.

 

This role will require you to have or be willing to go through Security Clearance. As part of the onboarding process candidates will be asked to complete a Baseline Personnel Security Standard; details of the evidence required to apply may be found on the government website Gov.UK. If you are unable to meet this and any associated criteria, then your employment may be delayed, or rejected. Details of this will be discussed with you at interview

Benefits

Methods Analytics is passionate about its people; we want our colleagues to develop the things they are good at and enjoy.

By joining us you can expect

  • Autonomy to develop and grow your skills and experience
  • Be part of exciting project work that is making a difference in society
  • Strong, inspiring and thought-provoking leadership
  • A supportive and collaborative environment

As well as this, we offer:

  • Development access to LinkedIn Learning, a management development programme and training
  • Wellness 24/7 Confidential employee assistance programme
  • Social – Breakfast Tuesdays, Thirsty Thursdays and Pizza on the last Thursday of each month as well as commitment to charitable causes
  • Time off 25 days a year
  • Pension Salary Exchange Scheme with 4% employer contribution and 5% employee contribution
  • Discretionary Company Bonus based on company and individual performance
  • Life Assurance of 4 times base salary
  • Private Medical Insurance which is non-contributory (spouse and dependants included)
  • Worldwide Travel Insurance which is non-contributory (spouse and dependants included)

Related Jobs

View all jobs

MLOps Engineer

MLOps Engineer

MLOps Engineer

MLOps Engineer

Machine Learning Engineer · ·

Senior Machine Learning Ops Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.

Data Science Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Data science has become a linchpin in modern business, transforming oceans of raw data into actionable insights that guide strategy, product development, and personalised customer experiences. With this surge in data-centric operations, the need for effective data science leadership has never been more critical. Guiding a team of data scientists, analysts, and machine learning engineers requires not only technical acumen but also the ability to foster collaboration, champion ethical practices, and align complex modelling efforts with overarching business goals. This article provides practical guidance for managers and aspiring leaders aiming to excel in data-driven environments. By exploring strategies to motivate data science professionals, develop mentoring frameworks, and set achievable milestones, you will be better prepared to steer your team towards meaningful, evidence-based outcomes.

10 Essential Books to Read to Nail Your Data Science Career in the UK

Data science continues to be one of the most exciting and rapidly evolving fields in tech. With industries across the UK—ranging from finance and healthcare to e-commerce and government—embracing data-driven decision-making, the demand for skilled data scientists has soared. Whether you're a recent graduate looking for your first role or a professional aiming to advance your career, staying updated through books is crucial. In this article, we explore ten essential books every data science job seeker in the UK should read. Each book provides valuable insights into core concepts, practical applications, and industry-standard tools, helping you build skills employers are actively looking for.