Microsoft Data Solution Architect

Belfast
1 month ago
Applications closed

Related Jobs

View all jobs

Principal Business Intelligence Consultant

Data Architect - Contract

Data Analytics and AI Consultant

Data Analytics and AI Consultant (London)

Junior Architect - Power Platform / Data Governance / Stoke

Senior Data Architect - Data Migration

Microsoft Data Solutions Architect needed for a permanent opportunity for a leading Microsoft Partner.

Key Role Responsibilities

  • Articulate Data Value: Understand and communicate the value data brings to an organization in alignment with business goals.

  • Design and Development Leadership: Lead the design and development of data solutions, including coding, testing, and defect resolution.

  • Hands-on Development: Actively develop components of data solutions.

  • Requirement Identification: Identify and translate functional, technical, and non-functional requirements into user stories for the team.

  • Performance Management: Manage performance, optimize costs, and execute unit and integration testing for data pipelines and reports.

  • Customer and Team Advisory: Advise on effort estimation and technical implications of user stories, manage work breakdown from inception to delivery, and oversee the team's backlog.

  • Customer Relationship Management: Maintain key relationships with decision-makers, including CxOs, throughout project delivery.

  • Industry Trends Awareness: Stay updated on trends in data science and engineering, including techniques, competitors, partners, and technology.

  • Continuous Improvement: Promote best practices and continuous improvement in data solutions.

  • Ability to do a Tender

    Education, Qualifications, and Skills

  • Experience: 5+ years in data roles.

  • Technical Skills:

    • Development experience with Microsoft (Azure) technologies, including Azure Data Factory, Synapse, and Power BI, or relevant ETL tools.

    • Expertise in Microsoft Fabric or Databricks

    • Experience with technology partners or consulting organizations is highly desirable.

    • Leadership experience in technical teams (engineers, analysts, architects) for data-intensive systems.

    • Proficiency in SQL or SQL extensions for analytical use cases.

    • Deep understanding of distributed data stores and data processing frameworks.

    • Ability to communicate technical designs clearly, both written and verbally.

    • Proficiency in designing analytical and operational data models.

    • Background in Data Architecture, Engineering, or Analytics with knowledge of modern enterprise architecture patterns.

    • Proven track record in delivering data-oriented solutions, including data warehousing, operational insight, data management, or business intelligence.

  • Certifications: Azure/Databricks data certifications are desirable.

    If you want the opportunity to take your career to the next level, please apply now

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.