Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Scientist

Mastercard, Inc.
City of London
3 days ago
Create job alert

Our Purpose

Mastercard powers economies and empowers people in 200+ countries and territories worldwide. Together with our customers, we're helping build a sustainable economy where everyone can prosper. We support a wide range of digital payments choices, making transactions secure, simple, smart and accessible. Our technology and innovation, partnerships and networks combine to deliver a unique set of products and services that help people, businesses and governments realize their greatest potential.

Title and Summary

Lead Data Scientist - Financial Crime

Who is Mastercard? Mastercard is a global technology company in the payments industry. Our mission is to connect and power an inclusive, digital economy that benefits everyone, everywhere by making transactions safe, simple, smart, and accessible. Using secure data and networks, partnerships and passion, our innovations and solutions help individuals, financial institutions, governments, and businesses realize their greatest potential.

Our decency quotient, or DQ, drives our culture and everything we do inside and outside of our company. With connections across more than 210 countries and territories, we are building a sustainable world that unlocks priceless possibilities for all.

Overview

In the Financial Crime Solutions team at Mastercard, we build and deliver products and services powered by payments data to find and stop financial crime. We're an award winning team with a proven track record of combining data science technique with an intimate knowledge of payments data to aid Financial Institutions in their fight against money laundering and fraud. Headquartered in The City of London, and operating globally, we craft bespoke algorithms that help our clients gain an understanding of the underlying criminal behaviour that drives financial crime, empowering them to take action.

Role

As a Data Scientist, you will join one of the first teams in the world looking at payments data in the UK and across the world. In the research discipline you will help build systems that expose money laundering and detect fraud as well as work with the other data scientists and clients to understand the underlying behaviours employed by criminals. You will be product focused, working in close collaboration with our engineering and operations data scientists as well as the wider sales, consulting, and product teams.

In this position, you will:

  • Perform proof-of-concept projects, engage in product design and build prototypes.
  • Use the full range of data science based techniques to develop new and novel algorithms to aid existing and new financial crime products.
  • Be able to perform novel research to help us and our clients understand the different criminal behaviours in payments data.
  • Think about how derived insights can be turned into new products and services we can offer to external clients.
  • Be ready to learn new technologies as required and engage with legacy and future technology stacks, in the UK and internationally.
  • Write white papers, patents, and client facing data visualisations.
  • Consider the full impact of your work. This means considering privacy, security, and regulation, as well as the performance of your code and the accuracy of your models.
Skills Required

Your passion is focused on the design of algorithms to solve real, pressing problems using data. You will have an interest in the financial services industry and want to tackle financial crime in the wider economy. You are excited by building products for clients and are keen to engage in the design processes this involves. Specifically:

  • You can write Python to a high standard and are familiar with the standard data science libraries such as pandas, scikit-learn and networkx.
  • You are capable of developing new algorithms in novel situations and can demonstrate previous work to evidence this.
  • You are keen to understand the data we work with and have a keen interest in how to model the behaviours it exposes.
  • You are able to communicate with non-tech colleagues about technical matters, and you are comfortable putting yourself in other people's shoes.
  • You are happy and excited to explore new programming languages, technologies, and techniques.
  • You have a can-do attitude, can be pragmatic where necessary, and are excited to work as part of a specialist team. You can engage in constructive criticism and aren't afraid to have your code reviewed.

As we are often breaking new ground, both for Mastercard and more widely in our sector, we strongly encourage exploring new technologies and techniques. Some of the following experience is therefore desirable:

  • Practical experience using streaming technologies, including streaming platforms (e.g. Kafka), online algorithms (e.g. stochastic gradient descent), and fixed-memory data structures (e.g. Bloom Filters).
  • Experience using next generation machine learning techniques and tools, including Deep Neural Networks and TensorFlow.
  • Exposure to Network Theory, especially social network analysis and graph diffusion analysis. Ability to build custom data visualisations, prototype browser based UX/UI, and the server side microservices to support them.
Corporate Security Responsibility

Every person working for, or on behalf of, Mastercard is responsible for information security. All activities involving access to Mastercard assets, information, and networks comes with an inherent risk to the organization and therefore, it is expected that the successful candidate for this position must:

  • Abide by Mastercard's security policies and practices;
  • Ensure the confidentiality and integrity of the information being accessed;
  • Report any suspected information security violation or breach, and
  • Complete all periodic mandatory security trainings in accordance with Mastercard's guidelines.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Lead Data Scientist

Lead Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.