Lead Data Scientist

Formula Recruitment
Nottingham
4 weeks ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - Credit Risk

Lead Data Scientist | Advanced Process Modelling | Pharma/Biotech


Salary: Up to £80,000

Technology: Python, MATLAB, MVA, SIMCA

Location: Hybrid, London (Flexible)


We’re partnering with an innovative and fast-scaling company that’s transforming how pharmaceutical and biotech organisations optimise their manufacturing processes. They combine cutting-edge data science with deep domain expertise to deliver model-driven solutions that enhance product quality, reduce batch failures, and improve operational efficiency. As demand for their expertise grows, they're expanding their global team to take on some of the industry’s most complex and high-impact challenges.


They are looking for a Lead Data Scientist who sits at the intersection of advanced analytics, strategic project execution, and pharmaceutical process knowledge. You’ll be responsible for guiding client engagements, leading multi-regional teams, and developing innovative solutions that directly impact drug manufacturing outcomes on a global scale.


Key Responsibilities


  • Lead and deliver global data science projects in pharma manufacturing.
  • Manage timelines, risks, and client communications.
  • Design ML models for process monitoring and predictive analytics.
  • Integrate ML to boost efficiency and reduce batch loss.
  • Build mechanistic, hybrid, and data-driven models for optimisation.
  • Ensure regulatory compliance and deploy models using SIMCA.
  • Mentor data scientists and support knowledge sharing.
  • Produce clear documentation and client-facing reports.


Required Experience


  • 5+ years in data science, with expertise in process monitoring and control.
  • Proven track record managing global, cross-functional projects.
  • Experience with OSI-PI, SAP, MES, or similar systems (preferred).
  • Strong background in ML for process monitoring and anomaly detection.
  • Skilled in MVA and tools like SIMCA, plus Python and/or MATLAB.
  • Able to integrate diverse data sources into analytical workflows.
  • Strong leadership and client-facing communication skills.
  • Highly organised, with a results-driven, problem-solving mindset.


This is a unique opportunity to take on a technical leadership position at the forefront of data-driven manufacturing in the life sciences sector. You’ll play a key role in delivering impactful global projects, shaping the future of advanced analytics in pharma and biotech. The role offers a flexible, remote-first work environment with strong support for professional growth and development.


** Unfortunately due to a high number of applications, not all applicants will receive feedback

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.